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Abstract Estimating the relative importance of

habitat loss and fragmentation is necessary to estimate

the potential benefits of specific management actions

and to ensure that limited conservation resources are

used efficiently. However, estimating relative effects

is complicated because the two processes are highly

correlated. Previous studies have used a wide variety

of statistical methods to separate their effects and we

speculated that the published results may have been

influenced by the methods used. We used simulations

to determine whether, under identical conditions,

the following 7 methods generate different estimates

of relative importance for realistically correlated

landscape predictors: residual regression, model or

variable selection, averaged coefficients from all sup-

ported models, summed Akaike weights, classical var-

iance partitioning, hierarchical variance partitioning,

and a multiple regression model with no adjustments

for collinearity. We found that different methods

generated different rankings of the predictors and that

some metrics were strongly biased. Residual regres-

sion and variance partitioning were highly biased by

correlations among predictors and the bias depended

on the direction of a predictor’s effect (positive vs.

negative). Our results suggest that many efforts to deal

with the correlation between amount and fragmenta-

tion may have done more harm than good. If con-

founding effects are controlled and adequate thought

is given to the ecological mechanisms behind mod-

eled predictors, then standardized partial regression

coefficients are unbiased estimates of the relative

importance of amount and fragmentation, even when

predictors are highly correlated.

Keywords AIC � Best model �
Habitat fragmentation � Independent effects �
Multi-model inference � Step-wise regression �
Suppressor variables � Variance inflation factor

Introduction

Anthropogenic landscape alteration can result in both

habitat loss (a reduction in the proportion of a

landscape composed of suitable habitat for a focal

species, commonly measured as reduced habitat

amount) and habitat fragmentation (a change in the

arrangement or configuration of the remaining habitat
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such as increased edge density, or reduced core area).

Because habitat loss and fragmentation are inevitably

correlated to some degree, they are often combined

into a single concept—‘‘habitat loss and fragmenta-

tion’’ (Ewers and Didham 2006, 2007) or even simply

‘‘fragmentation’’ (e.g., Gelling et al. 2007). However,

in the context of landscape planning for conservation,

combining these two processes may be counter-

productive, because: (1) they can be managed inde-

pendently to some degree (e.g., creating corridors to

link existing habitat patches could have a strong effect

on fragmentation but a comparatively weak effect on

habitat amount); and, (2) their effects on populations

and biodiversity may be different in magnitude and

even direction (e.g., creating corridors may have a

positive influence on a population through increased

connectivity but have a concurrent negative influence

through increased edge habitat in the landscape;

Fahrig 2003). As a result, it is important to understand

their independent effects so that management recom-

mendations result in the most efficient and effective

use of limited conservation resources (Lindenmayer

and Fischer 2007; Sutherland et al. 2004).

The current understanding of the relative impor-

tance of habitat loss and fragmentation is limited

because of the high degree of correlation between them

(McGarigal and Cushman 2002; Fahrig 2003). Indeed,

Koper et al. (2007) recently demonstrated that one of

the most common statistical approaches for separating

their effects—residual regression—is highly biased.

The approach involves using the residuals of a

regression of one correlated predictor on another as

an orthogonal predictor in a classic regression frame-

work (see Koper et al. 2007 for a detailed review). If

residuals are used to create a measure of fragmentation

that is orthogonal to habitat amount (or vice versa), the

assessment of relative importance may be inherently

biased towards habitat amount (or fragmentation).

Presumably, any shared effect is allocated to amount

which is usually the intact (i.e., non-residual) predictor

(Freckleton 2002). In some contexts, an a priori bias

may be appropriate (e.g., if habitat amount is inher-

ently easier to manage but see Ewers and Didham

2007); however, these residual regression studies have

also been incorrectly cited as evidence that amount is

more important than fragmentation (e.g., in Flather and

Bevers 2002; Fahrig 2003; Turner 2005).

The bias inherent in residual regression may be

even more complicated than has been suggested. The

presumed bias towards habitat amount assumes that

the effects of habitat amount and fragmentation on

biodiversity do not conflict, but they may. For

example, if an increase in habitat amount has a

positive effect on biodiversity but is positively

correlated with a measure of fragmentation that has

a negative effect, then the two processes will conflict

and suppress (mask) each other’s effects. Variables

that have these conflicting effects (opposite qualita-

tive effects and a positive correlation or similar

qualitative effects and a negative correlation) are

referred to as suppressor variables (Cohen and Cohen

1983). In these conditions, residual regression may

underestimate both effects. In addition, suppressor

effects likely influence other statistical methods. For

example, if an influential suppressor variable is

removed from a multiple regression, the effects of

the remaining predictor will be underestimated

(Legendre and Legendre 1998). These serious con-

sequences should clearly be addressed in comparing

the relative effects of habitat loss and fragmentation.

There are many statistical approaches for estimat-

ing the relative effects of correlated predictor variables

such as habitat amount and fragmentation (Graham

2003; Burnham and Anderson 2002; Gromping 2007)

but synthesizing the literature is difficult if previous

results have been determined by the statistical methods

rather than the actual biological effects. Therefore, in

this paper we have three objectives: (1) to review the

statistical methods that have been used to estimate

the relative importance of habitat amount and frag-

mentation; (2) to compare the accuracy and precision

of these different statistical estimates of relative

importance under identical conditions using simulated

but realistic data; and (3) to make recommendations on

the best approaches to use in future studies. In our

simulations, we compared 7 statistical methods: stan-

dard multiple regression, residual regression, variable

or model selection, two multi-model inference mea-

sures (sensu Burnham and Anderson 2002), and two

variance partitioning approaches.

Methods

Literature review

We searched the literature for studies that compared

the effects of habitat amount and fragmentation on an
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ecological response variable. After excluding patch-

scale studies (sensu Fahrig 2003), our review

included 33 empirical studies that compared the

relative effects of habitat amount and fragmentation,

measured at the landscape scale. We reviewed the

statistical methods used in the studies and the

conclusions on which (habitat amount or fragmenta-

tion) was more influential.

The studies in our review employed some combi-

nation of 6 statistical tools to evaluate the relative

importance of fragmentation and amount. These

included: (1) residual regression, (2) variable or model

selection procedures (stepwise significance or AIC-

based selection), (3) averaged coefficients that account

for uncertainty in model selection, (4) summed Akaike

weights [3 and 4 relate to multi-model inference

(MMI); Burnham and Anderson 2002], (5) classical

variance partitioning, and (6) hierarchical variance

partitioning (HVP, Chevan and Sutherland 1991). We

categorized metrics from these methods as either

‘‘confidence metrics’’ (i.e., those that estimate the

confidence or uncertainty in a particular predictor’s

effect, based on either statistical significance or the

inclusion of a predictor in a best or final model) or

‘‘strength metrics’’ (i.e., those that estimate the relative

strength of a predictor’s effect, based on a regression

coefficient or an estimate of explained variation).

Simulations

Landscapes variables

We used 350 real landscapes to provide the landscape

variables used in our simulations. The landscapes were

10 9 10 km regions of Southern Ontario, Canada;

which were clipped from a pre-existing, landcover

map of the province with 28 classes and 30 m cell-

resolution (OMNR 1998). We used four landscape

variables in our simulations. One variable represented

habitat amount (‘‘Amount’’ = the area of forest

cover). Two variables represented habitat fragmenta-

tion; habitat edge (‘‘Edge’’ = length of the edge

between forest and all non-forest landcover) and mean

patch size (‘‘MnPatch’’ = average size of forest

patches). A fourth variable represented the heteroge-

neity of natural landcover (‘‘Hetero’’ = number of

natural, landcover classes present in the landscape).

This fourth variable could be grouped with habitat

amount in the broader category of landscape

composition variables but in our simulations, it

primarily serves to demonstrate the effects of variables

that are less strongly correlated (r *0.5). For the first

three measures, the original landcover data was

reclassified into a binary, forest/non-forest landscape.

For the fourth measure (Hetero), the original landcover

classification was used. We chose these variables

because they are relatively common in landscape

ecology studies and they are correlated in these

landscapes (Fig. 1).

In our simulations, Edge acts as a suppressor

variable because all predictors are positively corre-

lated (Fig. 1) but Edge’s effects are opposite in sign

to all other predictors (i.e., negative). As an example

of this suppressor relationship, a regression coeffi-

cient for Amount would be effectively zero when

Y ¼ aþ 2:0 � Amount� 2:0 � Edgeþ e is regressed

on Amount only, because the effects of Edge on Y

suppress those of Amount (and vice versa). However,

if Y is regressed on both predictors then the partial

regression coefficients are accurate (|b| = 2.0).

We used both the pair-wise correlation matrix

among all predictors as well as each predictor’s

variance inflation factor (Neter et al. 1990) to quantify

collinearity. Variance inflation factors (VIF) were

calculated for each predictor as the inverse of the

coefficient of non-determination (1/(1-R2)) for a

regression of that predictor on all others. VIF is a

positive value representing the overall correlation of

each predictor with all others in a model. Generally,

VIF [10 indicate ‘‘severe’’ collinearity (Neter et al.

1990).

We used real landscapes because we wanted a

realistic representation of the covariance structure

among predictor variables in empirical studies of

habitat loss and fragmentation. We limited our

selection of landscapes to 350 that contained \30%

habitat cover because theoretical studies suggest that

fragmentation effects should be most evident in

landscapes with low habitat amount and therefore

questions of relative importance are most relevant

here (Fahrig 1998; Flather and Bevers 2002) and the

relationships between many fragmentation metrics

and habitat amount are simplified in this range

(approximately linear instead of curvilinear). We

standardized all predictors to a mean of 0 and a

standard deviation of 1.0 so that equal coefficients

implied equal effect-strength and to simplify

expected variance partitions for each predictor.
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Simulated response data

We generated simulated response data for all 350

landscapes, using a linear equation with coefficients

of known value (e.g., Y = a ? b1 Amount ? b2

Fragmentation ? e). The values of these response

data could be interpreted as a measure of average

abundance of a species within each landscape or any

other response with an approximately normal distri-

bution. We used each of the following linear

equations to represent 6 true models:

Yaeph ¼ aþ 2:0 � Amount � 2:0 � Edgeþ 2:0
�MnPatchþ 2:0 � Heteroþ e

Yae ¼ aþ 2:0 � Amount� 2:0 � Edgeþ e

Yap ¼ aþ 2:0 � Amount þ 2:0 �MnPatchþ e

Ya ¼ aþ 2:0 � Amount þ e

Ye ¼ a� 2:0 � Edgeþ e

Yp ¼ aþ 2:0 �MnPatchþ e

.
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The subscripts indicate ‘‘influential predictors’’—

predictors used to create the relevant simulated

response (e.g., ‘‘e’’ in Ye refers to Edge). ‘‘Uninflu-

ential predictors’’ are those that were not used to

create a particular response (e.g., Edge in Yap). The

error term (e) was normally distributed with mean of

zero and a variance adjusted so that a correct

statistical model (i.e., one that included the same

predictors as the true model) explained approxi-

mately 50% of the variation in the response.

Response data from each of the 6 true models were

replicated 100 times. Among the 100 replications,

only the random values of the error (e) in the linear

equation varied.

Comparing statistical methods

To compare the different statistical methods, the

simulated response data from each of the 6 true

models were analyzed using each of the 7 statistical

methods of relative importance (i.e., partial coeffi-

cients from a multiple regression, plus the methods

identified in our literature review). We assessed the

accuracy (in comparison to the true value) and

variation across the 100 replications in the estimates

of relative importance from each statistical method

(i.e., the mean and variation in the; partial coeffi-

cients, relative proportion of variance explained, or

relative importance according to the summed Akaike

weight). Finally, each of the 7 statistical methods

were compared under each of 3 conditions, by

varying which predictors were included in the

statistical analyses for each true model: (1) correct

predictors—the analysis contained all of the influen-

tial predictors and no uninfluential predictors; (2) too

many predictors—the analysis contained all of the

influential predictors as well as some uninfluential

predictors; and (3) too few predictors—the analysis

contained only a subset of the influential predictors.

The entire simulation experiment consisted of 7

statistical methods applied under 3 different condi-

tions to simulated data created under 6 true models

where the data creation was replicated 100 times.

All simulations were conducted using R statistical

software (www.r-project.org) with additional packages

for some of the specific statistical analyses including

‘‘hier.part’’ for HVP and ‘‘MuMIn’’ for MMI calcula-

tions across all possible sub-models (available online

at: http://r-forge.r-project.org/projects/mumin/).

Results

A majority of the studies that we reviewed found that

habitat amount was generally more important than

fragmentation in determining the effects of landscape

structure on biodiversity (Table 1). There were no

clear trends in published results that would suggest

particular methods were more likely than others to

find amount or fragmentation most important. Addi-

tional results of the literature review are in the

following, method-specific sections.

Partial coefficients from a multiple regression

This approach was not used on its own in any of the

reviewed studies, yet we found that multiple regres-

sion coefficients were unbiased estimates of effect

strength when the correct predictors were available

(Fig. 2A) and also when too many predictors were

available (Fig. 2D). However, as for all methods,

coefficients were biased if too few predictors were

available. If the missing predictor was not a suppres-

sor, then the absolute values of the coefficients were

over-estimated (see Amount in Fig. 3A). If the

missing predictor was a suppressor, then the absolute

values of the coefficients of the included predictors

were underestimated (Fig. 3B). In both cases, the

coefficients were biased to a degree dependent on

their correlation with the missing predictor.

Residual regression

Residual regression was used in 10 of the 33 studies

we reviewed (Table 1). All 10 used residuals for the

fragmentation variables, leaving the habitat amount

variables intact and were therefore supposedly biased

towards the effects of habitat amount. However, this

bias was not evident in the results. Indeed, only 50%

of the residual regression studies, compared to

approximately 70% of the remaining studies, con-

cluded that amount was more important than frag-

mentation (Table 1).

In our simulations, if the amount and fragmenta-

tion predictors had similar effect directions and were

positively correlated then residual regression overes-

timated the importance of the intact predictor and

underestimated the importance of the residual pre-

dictor (Fig. 4B) as suggested by Koper et al. (2007).

However, if the two predictors had a suppressor
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relationship (e.g., Amount and Edge), the importance

of both predictors was underestimated (Fig. 4A). In

addition, with a suppressor relationship, the presumed

bias in residual regression was actually reversed

because the residual predictor’s coefficient was less

underestimated than the intact predictor’s (i.e., the

residual predictor was more likely to be significant

and had a larger coefficient value, Fig. 4A).

Variable/model selection

Fourteen of the studies in our review used some sort

of stepwise selection procedure to identify important

variables for inclusion in a final or best model

(Table 1). Some (but not all) studies took steps to

limit correlations among predictors to avoid poten-

tially spurious models (Kruskal and Majors 1989;

Table 1 Summary of results and the statistical methods used in studies that have measured the relative effects of habitat loss and

fragmentation

Statistical approach Number

of

studies

Number

amount

most

important

Number

fragmentation

most

important

Number

equal or

variable

ranka

Number

reporting

correlations

among predictor

variables

List of references

Residual regression 10 5 1 4 5 Belisle et al. (2001), Cooper and

Walters (2002), Debuse et al. (2007),

Hamer et al. (2006), Hovel and

Lipcius (2001), McGarigal and

McComb (1995), Radford and

Bennett (2007), Trzcinski et al.

(1999), Villard et al. (1999),

Westphal et al. (2003)

Traditional variable

selection routine

14 11 3 0 5 Bartuszevige et al. (2006), Dodd et al.

(2006), Drolet et al. (1999), Hamer

et al. (2006), Hendrickx et al.

(2007), Langlois et al. (2001),

Magness et al. (2006), Radford and

Bennett (2004), Radford and Bennett

(2007), Reunanen et al. (2002),

Rompre et al. (2007), Rosenberg

et al. (1999), Stephens et al. (2005),

Taki et al. (2007)

Multimodel inference

using summed AIC

weights and

averaged

coefficients

10 6 2 2 4 Betts et al. (2006), Donnelly and

Marzluff (2006), McAlpine et al.

(2006a, b), Fletcher and Koford

(2002), Olson et al. (2004), Renfrew

and Ribic (2008), Westphal et al.

(2003), Wood et al. (2006), Yates
and Muzika (2006)

Classical variance

partitioning

5 2 0 3 3 Barbaro et al. (2007), Betts et al.

(2006), Cushmam and McGarrigal

(2003), Debuse et al. (2007),

Radford and Bennett (2004)

Hierarchical variance

partitioning

4 4 0 0 3 McAlpine et al. (2006a, b), Radford

and Bennett (2004), Radford and

Bennett (2007)

All studies combinedb 33 22 5 6 20

a These studies either showed approximately equal effects of loss and fragmentation or had different rankings based on multiple

response variables
b This row does not represent column sums because some studies used multiple methods
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Clark and Troskie 2006). This was generally done by

removing one of a pair of correlated predictors from

the model (either during the stepwise selection or

before the analysis by removing one of each pair of

highly correlated predictors). No studies provided

estimates of potential effect strength for any of the

removed predictors.

In our simulations, we used AIC to choose the best

model from among all possible combinations of a

global model (i.e., a model that includes all of the

available predictors). When the correct predictors

were available, this approach almost always selected

the global model (i.e., the correct model, Fig. 2B).

When too many predictors were available, the best

model included uninfluential predictors at least 14%

of the time (Fig. 2E). However, this inclusion of

uninfluential predictors did not strongly bias the

regression coefficients of the influential variables. If

too few predictors were available, the influential

predictors were retained in the best model but the

coefficients were biased in the same way as partial

coefficients from a multiple regression (Fig. 3).

Weighted mean coefficients

Ten of the studies we reviewed used coefficients

averaged across models to estimate relative impor-

tance (Table 1). In MMI, these averaged coefficients
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100% excl
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Fig. 2 Partial regression coefficients from three statistical

methods were unbiased estimates of effect strength, even with

highly correlated predictor variables. Estimates were unbiased

for—(1) multiple regression (A, D), (2) the best model selected

using AIC in a step-wise variable selection (B, E), and (3) the

MMI averaged coefficients (C, F)—when the influential

predictors were available (i.e., correct predictors A–C or too

many predictors D–F). Points and error bars indicate the mean

partial regression coefficients and 95th percentiles from 100

replications of simulated Y data. True Y indicates the influential

predictors (see text for definition). Horizontal dotted lines

indicate the true effect strength and any arrows show

deviations of the means from it. %sig indicates the percent

of replications where each predictor’s regression coefficient

was significantly different from zero (P \ 0.05), % incl

indicates the percent of replications where each predictor was

included in the best model, and % excl indicates the percent of

replications where each predictor was excluded from at least

one of the supported models (i.e., DAIC \ 4)
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are a strength metric for each predictor, which is

calculated as the weighted mean partial regression

coefficient, averaged across all supported models

(i.e., models for which Akaike weight[0.05, or DAIC

\4) and weighted by the Akaike weight (an estimate

of the support for each model in the data, Burnham

and Anderson 2002). In our simulations, when the

influential predictors were available (i.e., the correct

predictors or too many predictors), this method

generated unbiased estimates but the variance around

the estimates was slightly higher than for other

coefficient-based approaches (compare Fig. 2C, F).

When too few predictors were available, the coeffi-

cients were biased in the same way and to the same

degree as for the model selection and multiple

regression approaches (results similar to those in

Fig. 3).

Summed Akaike weights

The same ten studies that used MMI averaged

coefficients, also included a confidence metric for

each predictor, which was calculated as the sum of

the Akaike weights for all supported models that

include each predictor (‘‘variable importance’’ sensu

Burnham and Anderson 2002). With this metric, if

there are numerous competing models for which there

is some support, then variables that are included in

models with higher weights and/or included in more

of the supported models will be ranked higher in

relative importance. This measure is biased towards

predictors that are included in more candidate models

(Burnham and Anderson 2002, p. 169) but we found

no acknowledgement of this potential bias in the

reviewed studies.

In our simulations, the summed Akaike weight

was a liberal confidence metric, in that uninfluential

predictors were always allocated some importance.

Although the average estimate was generally lower

for uninfluential predictors, there was much variation

and in some replications uninfluential predictors
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Fig. 3 Partial regression coefficients were biased if influential

predictors were missing from the model and the strength and

direction of bias depended on suppressor relationships. In A,

the missing influential predictors were non-suppressors and

therefore the most highly correlated predictor (Amount) was

overestimated. In B, one of the missing influential predictors

(Edge) was a suppressor and therefore the most highly

correlated predictor (Amount) was underestimated. Partial

regression coefficients from a multiple regression are shown

here but the same bias applied to all three coefficient-based

estimates included in Fig. 2. See Fig. 2 for explanation of text

and symbols in the plot
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Fig. 4 Residual regression is biased but the bias depends on

suppressor effects. With suppressor effects (A), both amount

and fragmentation effects are underestimated and the analysis

is biased towards the residual predictor whether fragmentation

(left side of A) or amount (right side of A). When there is no

suppressor relationship (B) the analysis is biased towards the

intact predictor. The prefix ‘‘R.’’ indicates the residual

predictor in each of the 4 separate analyses. See Fig. 2 for

explanation of text and symbols
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received very high importance scores (Fig. 5B). In

addition, this metric underestimated the importance

of influential predictors that were more highly

correlated (e.g., Amount and Edge in Fig. 5A).

Classical variance partitioning

Five of the reviewed studies partitioned the variation

in the response into portions that were explained

independently by each predictor and portions that

were shared among predictors (Legendre and Legen-

dre 1998, p. 528). These studies used this approach to

estimate effect strength and importance of predictors

in a full model, by comparing the size of the

independently explained portions. However, when

the predictors are highly correlated, then the inde-

pendent portions represent only a fraction of the

predictor’s true effect or importance.

In our simulations, this approach could generally

distinguish between influential and uninfluential pre-

dictors but the ranking of influential predictors was

biased. Uninfluential predictors did not, on average,

explain any of the variation independently (Fig. 6A).

In contrast, even highly correlated influential predic-

tors were always allocated a non-zero share. However,

the ranking of influential predictors was highly

dependent on the correlations among predictors. When

all four predictors contributed an equal share (25%) to

the response (i.e., Yaeph) the average across all 100

replications of the independently explained variation

for each predictor ranged from 4 to 21% (Fig. 6A).

As for all methods, this approach was also biased

when too few predictors were available but the type of

bias depended on suppressor effects. The importance

of influential predictors was underestimated in all

situations (Fig. 6A, B, D) except when a substantial,

non-suppressor variable was missing from the analysis

(Fig. 6C). In that case, the importance of the modeled

predictor with similar qualitative effects as the missing

predictor was overestimated because it was allocated

the explanatory power of the missing predictor while

the modeled predictor with different qualitative effects

(suppressor relationship) was not. In contrast, when

the missing predictor had a suppressor relationship

with both retained predictors neither took on its

explanatory power; instead, the missing predictor’s

effect reduced the variation explained by all retained

predictors (Fig. 6D).

Hierarchical variance partitioning

The HVP approach was applied in 4 of the 33 studies

(Table 1). HVP decomposes all of the variation

explained by the full model (including the shared

component) into components that can be allocated to

individual predictors (Chevan and Sutherland 1991).

HVP partitions the shared components of the full

model by assuming that shared component within each

hierarchical level of all possible sub-models can be

divided equally among correlated predictors. HVP is

one of a number of closely related metrics of relative

importance that are more commonly applied in the

social sciences (Kruskal 1987; Gromping 2007).
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Fig. 5 Summed Akaike weights overestimated the importance

of uninfluential predictors (B) and in some replications,

underestimated the importance of influential predictors that

were more highly correlated (A). Text below each figure

indicates range in the number of supported models (i.e.,

DAIC \ 4) across 100 replications and the percent of

replications for which more than 1 model was supported.

Points and error bars indicate the mean summed Akaike

weights and 95th percentiles from 100 replications of

simulated Y data. See Fig. 2 for explanation of other text and

symbols
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In our simulations, the strength estimates from

HVP analyses were strongly affected by both the

predictor’s correlation with other predictors and the

direction of its effect. When all predictors had equal

absolute effects on the response (i.e., Yaeph, Fig. 6E),

importance was overestimated for those that were less

correlated and had positive effects (i.e., MnPatch and

Hetero) and underestimated for those that were more

correlated and had positive effects (i.e., Amount).

Importance of the suppressor variable Edge was

greatly underestimated. HVP always allocated some

of the explained variation to every predictor in the

model, even uninfluential ones (Fig. 6F). The impor-

tance was consistently overestimated for the follow-

ing three groups: uninfluential predictors, predictors

that were less correlated than the others (lower VIF),

and all predictors when influential, non-suppressor

predictors were missing from the analysis.

Discussion

Comparing methods

The main finding of our simulation experiment was

that standard multiple regression performed as well or

better than all of the methods that have been used to

account for collinearity. Standardized partial regres-

sion coefficients within a reasonably well specified

model are useful measures of effect strength even for
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Fig. 6 Independent variance partitions were biased estimates

of effect strength for all true models in all conditions

(Classical, A–D and HVP, E and F). Classical variance

partitioning underestimated the effects of influential predictors

(A and B) but was unbiased for uninfluential predictors (B). If

missing influential predictors were not suppressors, the effects

of some predictors were overestimated (C) and when missing

influential predictors were suppressors the effects of the

remaining predictors were underestimated (D and Edge in

C). HVP estimates were biased for influential and uninfluential

predictors (E and F) and were particularly biased against

suppressors (Edge in E). Points and error bars indicate the

mean and 95th percentiles from 100 replications of simulated Y
data of the percent of the variation explained by the model that

is independently attributed to each predictor. See Fig. 2 for

explanation of text and symbols
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correlated predictors. Within the range of true models

and conditions that we simulated, standardized partial

regression coefficients of highly correlated predictors

were unbiased whether from a straight-forward multi-

ple regression, the best model identified by AIC, or

averaged across all supported models using MMI in an

information theoretic framework—although the MMI

approach slightly increased the variance around the

estimate (Fig. 2). Perhaps the strong performance of

multiple regression should not come as a surprise since

there is a long history of using regression to control for

potentially confounding effects and continuous pre-

dictors are almost always correlated to some degree

(Legendre and Legendre 1998). However, considering

the added complexity from many statistical manipu-

lations intended to remove collinearity or the alterna-

tive methods intended to circumvent the issue, it is

remarkable that these efforts may be worse than doing

nothing at all.

Even though collinearity causes high variance

around partial regression coefficient estimates and

reduced statistical power (Neter et al. 1990; Graham

2003), our simulations suggest that the alternatives to

multiple regression have similar or even worse

problems. The summed Akaike weights of highly

correlated predictors were underestimated and more

highly variable than for less correlated predictors

(Fig. 5). In addition, the estimates from variance

partitioning approaches and residual regression were

both highly variable and biased (Figs. 4, 6). By

contrast, although more correlated predictors were

more likely to be found erroneously insignificant (i.e.,

increased Type II error—reduced statistical power),

in the context of our simulations, multiple regression

identified even the most highly correlated influential

predictors as statistically significant in [90% of the

replications (Fig. 2).

Ecologists have been trained to remove collinear-

ity from ecological regression models, in part,

because of suggestions that collinearity causes

‘‘biased’’ coefficient estimates (Petraitis et al. 1996;

Graham 2003). However, in our simulations partial

regression coefficients were unbiased for influential

predictors, even when the predictors were highly

correlated. The difference between our results and the

results of these previous studies is entirely due to

interpretation. Interpreting partial coefficients as

‘‘biased’’ assumes that the simple or univariate

coefficient of each predictor with the response

represents the ‘‘truth’’. In fact, if the two correlated

predictors have additive functional relationships with

the response (e.g., distinct ecological processes such

as population size and negative edge effects), then the

partial coefficients are the best representation of the

true effects and the univariate coefficients are the

‘‘biased’’ estimates. We only observed bias in the

partial regression coefficients when an important

confounding effect was missing from the model; and

indeed, this was true for all methods. Controlling for

confounding effects requires knowledge of the rele-

vant ecological processes in the system being studied

and clear links between those processes and the

predictor variables in the statistical model.

Residual regression studies are known to have

predictable bias (Koper et al. 2007) but our results

show they may also be biased in unexpected ways.

Residual regression is biased towards the intact

variable (usually habitat amount) if the effects of

amount and fragmentation do not conflict (i.e.,

conditions that lead to box B in Fig. 7 and similar

to the bias shown in Koper et al. 2007). However,

effect strength and statistical significance in pub-

lished studies may have been underestimated for both

amount and fragmentation if the variables were

suppressors (i.e., conditions that lead to box A in

Fig. 7). Indeed, some published estimates may even

have been biased in favor of the residual variable

(usually fragmentation), because our simulations

suggest the residual variable’s effect is less underes-

timated than the intact variable. Therefore, even if a

researcher had wished to impose an initial priority on

one of the variables, residual regression may have

given inaccurate results. Suppressor effects may

explain why the results of studies that used residual

regression did not reflect the presumed bias of habitat

amount over fragmentation (Table 1). Our results

cast serious doubt on previous research that applied

residuals to distinguish between the effects of habitat

fragmentation and amount.

Partitions of independently explained variation

should be avoided as measures of the relative effects

of amount and fragmentation because they reveal as

much about the correlation structure among predic-

tors as their relative effects. When true effects were

identical across predictors, the classical independent

variance partitions ranked the predictors according to

their level of correlation with the other predictors.

The independent partitions were approximately what
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would be expected considering the correlation struc-

ture of the predictors but they did not accurately

represent the true independent contributions of each

predictor. Similarly, estimates of relative importance

using HVP depended on how correlated a predictor

was but were further biased by the direction of a

predictor’s effect (i.e., underestimated for highly

correlated predictors and suppressor variables and

overestimated for others). The flaw in using partitions

of independently explained variation as estimates of

importance is that they combine estimates of effect

strength and confidence. It is not clear from an

independent variance partition (classical or HVP)

whether a variable has a strong but uncertain effect or

a certain but weak effect. In a management context,

this distinction is clearly important. Less confounded

metrics of effect strength (such as coefficient-based

estimates) presented in combination with confidence

estimates (such as summed Akaike weights or the

coefficient’s confidence intervals) will be more

informative than estimates of explained variation.

Toward a synthesis

Future studies of the relative importance of amount

and fragmentation should explicitly report both the

variance inflation factor for each predictor and the

pair-wise correlations among all predictors. Without

this information, we could not synthesize the literature

in our review while accounting for the biases identified

here. Many studies reported only a maximum, pair-

wise correlation coefficient (e.g., r \ 0.8), or removed

predictors that were ‘‘highly’’ correlated with another

predictor in the analysis using an arbitrary cut-off

value for pair-wise correlations (usually r [ 0.5–0.7).

These simple criteria give no information on the

remaining correlations, which may still influence

results. Indeed, considering only pair-wise correla-

tions may not actually reduce the statistical problems

caused by collinearity. Complicated relationships

among predictors can result in large increases in error

around coefficient estimates for predictors that none-

theless have very low pair-wise correlations with all

other predictors (Neter et al. 1990).

We did not find a single reference to potentially

conflicting effects of correlated predictors (suppressor

effects) in any of the reviewed studies. However,

suppressor effects have very likely influenced the

results of studies that used residual regression or HVP;

they may also have led to underestimates of effect

strength for retained variables in any of the methods, if

one of a pair of suppressor variables was removed from

the analysis because it was ‘‘highly correlated’’. In an

ecological context, suppressor variables may represent

Fig. 7 The bias in residual regression depends on suppressor

effects (i.e., the correlation between amount and fragmentation

and whether the fragmentation measure has a positive or

negative effect on the response). This figure shows the

qualitative bias in published studies that used residual

regression to create fragmentation metrics orthogonal to habitat

amount. The strength of the bias is directly related to the

magnitude of correlation between the original predictors in the

published study. If habitat loss was measured instead of

amount, a negative effect of loss on the response would be

expected. In this case, switching the contents of boxes A and B

would show the resulting bias
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important effects. For example, increasing habitat

amount may have a positive effect on a population

through an increase in population size but the concur-

rent increase in edge length may have a negative effect

that acts through an unrelated mechanism (e.g.,

increases in mortality rates from predators that use

habitat edges). In conditions of conflicting ecological

processes, using residual regression, HVP, or arbi-

trarily removing one of a pair of highly correlated

variables from a regression model, will give biased

estimates of relative importance.

Confronting collinearity

There are two considerations that should inform

decisions on including particular variables in future

studies of the relative effects of habitat amount and

fragmentation. First, if two predictors are thought to

represent distinct ecological processes or mechanisms

then both should be included in the analysis. An

understanding of the important ecological processes

and mechanisms is essential if statistical modeling is to

advance ecological understanding (MacNally 2000).

Removing variables simply because they are highly

correlated with each other or have a weak univariate

correlation with the response can lead to uncontrolled,

confounding effects that decrease the explanatory

power of the final model and generate biased measures

of effect strength. Second, the direction of the effect

and the correlation between two variables must be

considered. If two predictors have a suppressor

relationship (i.e., opposite qualitative effects and a

positive correlation or similar qualitative effects and a

negative correlation), removing one will underesti-

mate the effects of the remaining predictor. If two

predictors do not have a suppressor relationship (i.e.,

similar qualitative effects and a positive correlation or

opposite qualitative effects and a negative correlation),

removing one will overestimate the effects of the

other. If these two considerations are followed,

standardized partial regression coefficients will be

unbiased estimates of the relative importance of

amount and fragmentation, even when predictors are

highly correlated.
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