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Abstract. Landscape pattern indices (LPI), which characterize various
aspects of composition and configuration of categorical variables on a
lattice (e.g., shape, clumping, proportion), have become increasingly popular
for quantifying and characterizing various aspects of spatial patterns. Unlike
in the case of spatial statistical models, when either the joint distribution of
all values is characterized by a limited number of parameters, or the
distribution is known for certain (usually random) cases, the distributions of
LPI are not known. Therefore, comparisons of LPI or significance testing of
differences among various landscapes and/or studies are uncertain. This
paper scrutinizes six widely used LPI, which are computed based on
categories mapped onto regular lattices. We designed a simulation using
Gauss-Markov random fields to establish the empirical distributions of LPI
as functions of landscape composition and configuration. We report the
results for stationary binary landscapes. The confidence intervals for LPI are
derived based on 1000 simulations of each given combination of parameters,
and further details are evaluated for three illustrative cases. We report the
distributions of the LPI along with their co-variation. Our results elucidate
how proportion of cover classes and spatial autocorrelation simultaneously
and significantly affect the outcome of LPI values. These results also
highlight the importance and formal linkages between fully specified spatial
stochastic models and spatial pattern analysis. We conclude that LPI must be
compared with great care because of the drastic effects that both composition
and configuration have on individual LPI values. We also stress the
importance of knowing the expected range of variation about LPI values so
that statistical comparisons and inferences can be made.
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1 Introduction

Global, regional, and local environmental data at multiple spatial, temporal,
and thematic resolutions are easily obtainable for geographical research.
They provide an exceptional opportunity for the interpretation and
comparison of spatial processes for various landscapes of considerable
extent. To add rigor to landscape analysis, quantitative measures of
categorical image spatial patterns (e.g., for classified satellite imagery)
known as landscape pattern indices (LPI) have become increasingly popular
(e.g., Li and Archer 1997; Trani and Giles 1999; Imbernon and Branthomme
2001; Li et al. 2001). Several LPI for measuring landscape pattern exist,
developed from statistical measures of dispersion, information theory, fractal
geometry, and percolation theory (Li and Archer 1997) to describe the
shapes, abundances, and configurations of landscape categories mapped on
lattices. LPI Computation of these indices has been facilitated by software
developments (e.g., Baker and Cai 1992; McGarigal and Marks 1995).
Recently, Riitters et al. (1995), Haines-Young and Chopping (1996),
Gustafson (1998), and O’Neill et al. (1999) among others, have published
summaries of the numerous developments and contributions to the field of
quantifying and comparing landscape spatial patterns. Even the perceptions
of these patterns have been studied by evaluating the ability of interpreters
to consistently identify fragmented landscape patterns (D’Eon and Glenn
2000).

The general description of spatial pattern requires information regarding
the composition or variability (“how different things are’”) and configura-
tion or arrangement (‘‘how things are distributed’’) of phenomena in space
(Li and Reynolds 1994, Bailey and Gatrell 1995, Csillag and Kabos 2002).
We use composition to describe the categories, or colors of an image and
configuration to describe the arrangement of those categories within the
image. Since a comprehensive LPI that fully considers both of these facets
of spatial pattern does not exist, ecologists, geographers, foresters, and
other spatial analysts often select a suite of LPI aimed at describing several
(not necessarily uncorrelated) landscape pattern components (Riitters et al.
1995; McGarigal et al. 2001; Tischendorf 2001). This approach however,
can still result in several visually different landscapes exhibiting very
similar, if not identical LPI values (Figure 1), which makes statistically
rigorous interpretation a daunting if not impossible task. Figure 1 clearly
illustrates the statement by Gustafson (1998) that several landscape
configurations may produce identical LPI values. Although the landscapes
depicted in Fig. 1 differ visibly, they exhibit an almost equal number of
contiguous clusters (patches), density of contiguous cluster edges, patch
clumping, and relative land cover proportions as computed by common
LPIL
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Random Noodles Bumpy

Fig. 1. These three hypothetical landscapes (64> pixels each) differ visually and exhibit different
degrees of spatial autocorrelation but have almost identical LPI values. Landscapes are labeled
as Random to indicate a purely random stochastic pattern, Noodles to indicate elongated narrow
patches, or Bumpy to indicate larger contiguous patches. The number of patches (~80),
contagion (~3.0), landscape shape index (~13), edge density (~8000), proportion of two classes
(~50-50%), and the modified Simpson’s evenness index (~0.95) do not allow differentiation
among these sample landscapes

The development and usage of LPI (also referred to as landscape metrics)
originated when quantifiable measures of similarity (or dissimilarity) among
landscapes were required to answer process related research questions
(O’Neill et al. 1988; O’Neill et al. 1999). Numerous studies attempt to
compare changes to spatial landscape patterns, often resorting to traditional
statistical tests based on changes in LPI values (e.g., Wickham and Riitters
1995; Diaz 1996; Johnson et al. 1999; Hessburg et al. 2000; Patrizia et al.
2000; Imbernon and Branthomme 2001; McGarigal et al. 2001). It has also
been hypothesized and demonstrated that information contained among LPI
is redundant and that correlation and ordination techniques may be used to
reduce the dimensionality of variables describing the spatial landscape
patterns (Riitters et al. 1995; McGarigal and McComb 1995).

While unraveling the complex conceptual and practical linkages between
landscape patterns and spatial processes has been identified as an important
research directive (Turner et al. 1999, p. 107), derived LPI appear to address
specific elements of pattern individually rather than collectively. The
simplicity of a single (or a few) values to describe intricate landscape
patterns is appealing, but it remains highly unlikely that such drastic
simplification of a natural system could adequately describe the multitude of
interactions and patterns found in natural landscapes, especially heteroge-
neous ones. Thus, to use LPI effectively, their behaviour under various
composition and configuration scenarios requires investigation and docu-
mentation.

Unlike spatial statistical models, when either the joint distribution of all
values is characterized by a limited number of parameters (e.g., geostatistics),
or the probability distribution is known (e.g., join-count statistics, neutral
models), the distributions of LPI are not known (Hess and Bay 1997). This
means that expected values and variances are not available to allow
statistical comparisons among various observations of an LPI. Hess and Bay
(1997) successfully generated confidence intervals for LPI using bootstrapped
confusion matrices; however, their approach considers only land cover
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proportions and admittedly becomes unreliable with the introduction of
spatially autocorrelated data. Schroeder and Perera (2002) report their
confidence intervals based on standard errors gleaned from a series of
naturally disturbed forest patches in Ontario, Canada. However, none of
these approaches provide a rigorous and global confidence interval for
comparing landscape patterns.

It has long been known that LPI are sensitive to scale (Cullinan and
Thomas 1992), land cover proportions (Gustafson and Parker 1992; Saura
and Martinez-Millan 2002), spatial resolution (Benson and Mackenzie 1995;
Wickham and Riitters 1995; Qi and Wu 1996), spatial extent (Saura and
Martinez-Millan 2001), land-cover misclassification (Wickham et al. 1997),
and fragmentation (Hargis et al. 1998). Each of these studies expresses
caution and alludes to various limitations of LPI comparisons. Regardless of
these cautions, and likely due to a lack of available alternatives, the list of
research articles, comparing LPI values without explicit references to
controls of their distributions is extensive within the peer-reviewed literature
during the past decade (e.g., Baskent 1999; Hessburg et al. 1999; Kitzberger
and Veglen 1999; Kepner et al. 2000). We present a statistically rigorous
alternative that is now available; it provides justifiable LPI confidence
intervals suitable for hypothesis testing.

This paper explores the comparability of six commonly computed LPI
(number of patches, patch density, edge density, landscape shape index, area-
weighted mean shape index, and contagion) by analyzing their sensitivity to
the two main aspects of spatial pattern: composition and configuration. We
begin by choosing a simple, stochastic model that defines a spatial process
that is manipulated by parameters for composition and configuration while
incorporating an element of chance. The model is used to generate numerous
equally likely stationary, binary landscapes. Currently, only binary land-
scapes are reported due to their simplicity and common usage in the
landscape ecological literature (e.g., Krummel et al. 1987; Gustafson and
Parker 1992; Plotnick et al. 1993; Lavorel et al. 1993; Gardner 1999;
MclIntyre and Wiens 2000; Elkie and Rempel 2001; Tischendorf 2001) and to
demonstrate the applicability of the technique presented in this paper.

For each spatial stochastic realization, LPI were computed and summa-
rized to obtain the respective empirical distributions. Thus, the generated
empirical distributions are functions of the stochastic parameters used to
generate the landscapes (proportion and spatial autocorrelation). These
distributions are often non-Gaussian but do provide the basis for determin-
ing confidence intervals for any given combination of the stochastic
parameters (based on n = 1000 realizations), and for constructing scatter
plots between pairs of LPI. We wanted to use a relatively simple model that
would require the estimation of very few (i.e., two) parameters (Haining
1990; Rossi et al. 1992) but still consider one for composition (proportion)
and one for configuration (spatial autocorrelation). Our model explicitly
incorporates parameters for two cardinal dimensions of spatial pattern.
Unlike the models Gardner (1999) developed, our model carries the power of
hypothesis testing using statistical tools. We illustrate the construction of the
empirical distributions, demonstrate their application, and briefly outline
how to extend this methodology to suit multinomial and non-stationary
cases.
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2 Stochastic simulation and pattern indices

The stochastic relationship between pattern and process can be expressed
by the expectation that if a particular process acts on a landscape, certain
patterns are much more likely than others may be (Fortin et al. 2003).
The simulation of spatial stochastic processes permits us to construct
probability distributions for all landscape types possible given the
constraints of our parameter space. To overcome the limited number of
replications in natural landscapes (Hargrove and Pickering 1992; Oksanen
2001), many authors have used simulated landscapes (e.g., Gustafson and
Parker 1992; Fortin 1994; Li and Reynolds 1994; Hargis et al. 199S;
Gardner 1999; Tischendorf and Fahrig 2000, Saura and Martinez-Millan
2000). Maintaining consistency with other papers published in this field
we opted to match the suggested number of simulations (n = 1000)
required to construct stable empirical distributions (Efron and Tibshirani
1993).

2.1 Simulation approaches in landscape pattern studies

One classification of landscape pattern simulation methods is provided by
Saura and Martinez-Millan (2000), who describe three broad categories: (1)
neutral models, (2) spatially explicit models, and (3) spatial or geostatistical
models. Each class of model can be useful under specific circumstances;
knowing which type of model to apply depends on the purpose of the model
and data availability.

Neutral models are the basis for maps with an expected pattern in the
absence of specific landscape processes (Gardner et al. 1987; Gardner 1999;
Turner et al. 2001). Such maps are generally some form of random
simulation such as percolation maps (e.g., Gustafson and Parker 1992) or
hierarchical neutral processes (e.g., O’Neill et al. 1992; Gardner 1999) and
allow for the construction of empirical distributions used in hypothesis
testing.

Neutral models would allow for comparison between the outcome of
a spatial stochastic process and a real landscape. Furthermore, a real
landscape may be compared to a large collection of neutral landscapes,
allowing significance testing. Deviations from the neutral model indicate the
influence of a spatially dependent process. Thus, neutral models can indicate
deviation from complete spatial randomness (CSR), fractal (Hargrove et al.
2002), or hierarchically structured landscapes (Gardner 1999) by exhibiting
various degrees of spatial autocorrelation. Attempts to modify the CSR
neutral model approach to better simulate natural landscapes have involved
randomly adding/removing pixels of specific class types until specified
thresholds of class area or fragmentation has been met (Tischendorf and
Fahrig 2000). Similarly, Gustafson and Parker (1992) achieved pre-specified
proportions between classes by randomly adding rectilinear clumps of
random length to a regular lattice to emulate agricultural patterns. Hargis
et al. (1998) used a similar method, but instead of placing random patches,
their patches were selected from a database of actual clear-cut patches
representative of the area being simulated.
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Spatially explicit landscape simulation models require the input of specific
processes that ultimately govern the output patterns (Fortin et al. 2003).
Models like LANDIS (He and Mladenoff 1999), OnFire (Perera, personal
communication) and PATPRO (Czaran 1998) simulate ecosystem distur-
bances and recovery according to spatial ecological principles and phase-
transition rules. These types of models are usually locally stochastic (i.e.,
chance influences values of individual elements at a time), and these
probabilities are empirically tuned according to previous knowledge about
the system being studied (Johnson et al. 1999; Yemshanov and Perera 2002).
Often, these models are process-specific and sometimes cannot be generalized
beyond a particular site and/or context.

Spatial or geostatistical simulations attempt to capture landscape charac-
teristics by constraining values according to their joint-distribution, a
monotonic function of variance versus distance. This technique has received
considerably more attention in pattern analysis unrelated to landscape
ecology (Haining 1990; Cressie 1993), but has recently been reported as a
powerful tool to reproduce ecological patterns (Dungan 1998). Furthermore,
theoretical linkages between fractal characteristics and geostatistical simu-
lations have been identified (Keitt 2000). The basic idea is an extension from
time-series analysis: to parameterize by a (limited) number of parameters in
the joint-distribution, the deviation from independence for all values across a
landscape. Although there are several choices for the actual shape of this
distribution, the direct link between the parameters and the concept of
spatial autocorrelation is an attractive feature of this approach. Further-
more, the role of stochastic simulation in the assessment of uncertainty has
become a focal point in spatial information processing and situations
exhibiting non-stationarity (Journel 1996; Atkinson 1999).

In general, simulation methods can be useful for landscape pattern studies
in two fundamental ways: (1) the behavior of a particular simulation model
can be analyzed by generating a large number of landscape realizations, and
(2) model parameters can be estimated based on observed data to verify or
calibrate a model’s ability to characterize a given landscape. We emphasize
that the model parameters (composition and configuration) can be specified
independently (Vargha et al. 1996), but cannot be estimated independently of
each other. Our objective was to use the first approach in deriving confidence
intervals for LPI from the empirical distributions, so that practitioners can
decide whether observed differences in LPI values are significantly different.

As noted earlier, confidence intervals for LPI remain sensitive to the size,
shape, and the spatial arrangement of pixel values; thus, it is important to
have a measurement framework within which statistical comparisons are
feasible with respect to time, fiscal constraints, and data processing
requirements. Our approach was to simulate many landscapes with similar
statistical parameter-settings and note how sensitive LPI are to stochastic
differences. Alternatively, Li and Reynolds (1994) generated landscape
realizations based on levels of five well-known LPI selected a priori. Many
LPI appear to be sensitive to changes in landscape extent and structure (i.c.,
location, or small shifts of the analysis window); these elements were also
controlled for in our investigation. Thus, our specific objective was to
conduct rigorous tests on six commonly used LPI to examine their sensitivity
to land cover class proportions (first-order effect) and spatial autocorrelation
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(second-order effect) using a flexible spatial stochastic simulation model (see
Fortin et al. 2003).

2.2 A stationary stochastic random field simulator

To simulate potentially realistic landscapes, we need to be able to model
departures from independence. Markov-type departures have been widely
used in time-series analysis and have been applied to spatial models (Besag
1974; Upton and Fingleton 1985; Cressie 1993). The basic idea is that one
does not need to be able to write the joint distribution of all the data values;
full stochastic accounting can be equivalently specified by local conditional
distributions (Hammersley-Clifford theorem — see Upton and Fingleton
1985, p. 363; Cressie 1993, p. 403). The “‘natural” implementation of this
scheme leads to the conditionally specified autoregression (CAR), which for
Gaussian data has a particularly simple joint distribution (Cressie 1993,
p. 407) and has some theoretical advantages (e.g., in parameter estimation)
compared to other (autoregressive and geostatistical) models (Cressie 1993
p. 410). For the CAR model, the conditional expectation can be written as
E{Z|Z{} = p; Y ,on, WiiZj, with conditional variance V{Z;|Z{} = . Here, i
and j are spatial indices, Z; is the value being considered and Z; are the
values within the neighbourhood defined by the contiguity matrix W;; and p
is the spatial autocorrelation parameter. This reads that if Z; and Z; are not
neighbors, they are conditionally independent, that is, the distribution of Z;
is not dependent on the value of Z;. An ecologically feasible interpretation of
this model would say that a process influences location i only through its
(appropriately defined) neighborhood.

Simulating realizations of Gauss-Markov random fields according to this
general scheme (e.g., all parameters: local expectation, variance, and
autocorrelation can change for each location) are possible (Csillag et al.
2001), but parameter estimation is challenging (e.g., Markov Chain Monte
Carlo — see Cressie 1993, p. 417). Systematic investigation of the impact of
the parameters would be an enormous task because there is a potential for
having more parameters than there are data elements. Therefore, this study is
limited to stationary landscapes, where the local conditioning is homoge-
neous across the entire study area (i.e., the stochastic parameters are
constant). In this case, the simulation becomes much simpler, allowing
implementation with a very fast algorithm based on the spectral (or
autocorrelation) theorem (Christakos 1992, p. 318). We utilize the fact that
the covariance matrix (C) of a CAR process is known: C = (I — pW)fl (for
isotropic cases), where I is an identity matrix, p is the spatial autocorrelation
parameter, and W is a contiguity matrix (the spatial neighborhood of
influence). On a regular grid, this is a Toeplitz matrix (Bartlett 1955). This
structure allows for a manageable number of parameters. However, in the
general case, the definition of the spatial neighborhood structure is not a
trivial exercise (Henebry and Merchant 2002) and parameter estimation
could be much more difficult.

For anisotropic cases, we can decompose the spatial autocorrelation
parameter into the general compass directional components: hor-
izontal (pw_g), vertical (pn_g), and diagonal (pnw_sE, PnE_sw)- Since the
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parameters are non-directional (i.e., py_g = ps_n), only half of the param-
eters need to be stated, remembering that the sum of the parameters can at
most sum to unity). Thus, for 2N x 2N grids we obtain the simulated values
by Re{FFT!(X/Z)}, where Re{} denotes the real part of a complex
number, FFT denotes the Fast Fourier Transform, X is 2”N independent,
identically distributed (Gaussian) random numbers and Z = Re{FFT(C)}.

We chose to simulate landscapes with 64° pixels, each representing one
spatial stochastic realization based on an assigned class proportion and level
of spatial autocorrelation. Note that we use the term spatial autocorrelation
not as one of the popular indices (e.g., Moran, Geary), but strictly as the
parameter(s) of the CAR model. We selected three cases of spatial
autocorrelation parameters for illustrative purposes, characterized as
follows: Random to describe random landscapes (pn_s = Pw_E = PW_SE =
PneE—sw = 0), Bumpy to describe landscapes with a strong tendency for few
isotropic large patches (pn_g = 0.25, pw_g = 0.25, pnw_se = Pne—sw = 0),
or Noodles to describe anisotropic landscapes with a strong tendency for
elongated  patches (pn_g =0.125, pw_g =0.125, paw_sg = 0.25,
Pne-sw = 0). Once we obtain a realization, we transform the real numbers
to nominal (categorical) variables by cutting their distribution (Jensen 1996)
at proportions of 10, 20, 30, 40, 50, 60, 70, 80, and 90 percent white to black,
resulting in 9 binary images for each realization. This histogram slicing is a
fast and convenient way to obtain controlled class proportions from
Gaussian distributions. In total, 27000 landscape images were generated
(1000 realizations x 9 proportions x 3 autocorrelation scenarios).

2.3 Computation of LPI and empirical distribution generation

The binary landscape images were subsequently processed by a program
called FRAGSTATS (McGarigal and Marks 1995) that computed the
requested suite of six LPI (Table 1), writing all results for each spatial
autocorrelation category to a common database. Each landscape had a
unique and distinguishing filename; thus, individual results in the database
link to their originating proportion and level of spatial autocorrelation by a
set of unique factors.

The number of patches (NP) indicates the number of contiguous patches
(clusters) existing in a given binary landscape, computed using four
orthogonal neighbours. Patch density (PD) measures the number of patches

Table 1. List of landscape pattern indexes used in this paper: their descriptions, measurement
units, and limits. Naming and scaling conventions are those of McGarigal and Marks (1995)

LPI Description Units Limits

NP Number of patches None NP > 1

PD Patch density #/100 ha PD >0

ED Edge density m/ha ED >0

LSI Landscape shape index None LSI > 1
AWMSI Area-weighted mean None AWMSI > 1

shape index
CONTAG Contagion index % 0 < CONTAG < 100
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relative to the total landscape area (A4); thus PD = (NP/A4)(10000)(100). Edge
density (ED) is a measure of total edge-length (E) to the total area of the
landscape. Therefore, ED = (E/A4)(10000), resulting in a measure of length
per unit area. The scaling for PD and ED is an artifact of FRAGSTATS that
can be ignored in this study because metrics for each landscape are scaled
identically and were simulated with common extent and nominal spatial
resolution.

The landscape shape index (LSI) is a comparison of patch shapes to a
square standard; thus, LSI = [(0.25)(E)]/(472). Similarly, the area-weighted
mean shape index (AWMSI) compares the shape of patches to a square
standard, but also weights the resulting index by the area of each patch,
giving larger patches more weight than smaller patches. Contagion (CON-
TAG) measures the relative evenness of a landscape, considering the number
of adjacencies between pairs of patch types, for all patch types, and the
proportion of landscape classes. The computation of contagion used a
neighborhood consisting of the four cardinal directions (i.e., rook’s case).

Finally, the LPI results within each class proportion and spatial autocor-
relation category were summarized such that their distributions could be
viewed both graphically and numerically using statistical software. The
distributions can be viewed in the following section along with their
interpretations and discussion regarding their use.

3 Simulation results: Sensitivity of LPI to composition and configuration

The selected suite of six LPI reflects the general guidelines set by various
authors (e.g., Li and Reynolds 1994; Riitters et al. 1995; Wickham et al.
1996; Garrabou et al. 1998; Griffith et al. 2000; Ripple et al. 2000).
Furthermore, the literature claims that measures of total landscape area,
number of classes, proportion among classes, and edge lengths will
incorporate much of a landscape’s pattern description (e.g., Giles and Trani
1999). The replication in our simulations provided data for constructing
empirical distributions. We show examples of these empirical distributions
for the Random (Fig. 2) and Bumpy (Fig. 3) landscape scenarios as series of
box-plots. The black box-plots represent the variability for 1000 simulated
landscapes at each 10-centile of binary land cover proportion and gray box-
plots represent 100 simulations for each percentile (1,2,3,...,98,99) of binary
land cover proportion. For these box-plots the mean, the median, the central
50%, the central 95% and the outliers are represented by a white line, a
cross, a shaded box, square clumps and thin black lines, respectively. Note
that land cover proportions and the spatial autocorrelation affect both the
expected value and the variance of an LPI.

To describe the effects of both spatial autocorrelation and proportion on
resulting LPI values, subsequent simulations were performed where the class
proportion and spatial autocorrelation were incremented in 10 steps
throughout their possible ranges and repeated 100 times. A series of two-
dimensional contour maps were constructed with these two variables as the
axes (x,y) and values of corresponding LPI as z. Figure 4 shows these
surfaces for the isotropic processes, where a cross-section of the surface at
p = 0 corresponds to Random, while a cross-section at p = 1 corresponds to
Bumpy. Results for the Noodles landscapes are not shown due to their
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Fig. 2. Empirical distributions for number of patches, edge density, landscape shape index,
patch density, area-weighted mean shape index, and contagion under the Random landscape
scenario (no spatial autocorrelation) for varying binary land cover proportions

similarity to Bumpy landscapes. This series of figures suggests that both the
expected value and the variance of the LPI are, in general, strongly
influenced by both landscape composition and configuration.

The surfaces depict the average LPI value given the joint-occurrence of a
given land cover proportion and level of first-order neighbor isotropic spatial
autocorrelation. The box-plots, Figs. 2 and 3, are cross-sections taken
through these surfaces at the two extreme values as indicated by Random (no
spatial autocorrelation) and Bumpy (high spatial autocorrelation) scenarios.

Interaction among LPI was characterized by generating cross-scatter plots
among all combinations of LPI across realizations subject to each spatial
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Fig. 3. Empirical distributions for number of patches, edge density, landscape shape index,
patch density, area-weighted mean shape index, and contagion under the Bumpy landscape
scenario (high spatial autocorrelation) for varying binary land cover proportions

autocorrelation category while proportions of categories changed from 1 to
99% in 1% increments (Fig. 5). These scatter plots clearly show strikingly
different relationships between pairs of LPI for low and high spatial
autocorrelation (Random versus Bumpy), but surprisingly similar relation-
ships between pairs of LPI for isotropic and anisotropic cases (Noodles
versus Bumpy). While pair-wise relationships between LPI have been
characterized by correlation coefficients assuming linear association (e.g.,
Riitters et al. 1995; Hargis et al. 1998), for the majority of cases presented,
relationships are generally non-linear and depend heavily on the proportion
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Fig. 4. These surfaces depict the average value for LPI given the joint-occurrence of a given land
cover proportion and level of first-order neighbor isotropic spatial autocorrelation. The box-
plots (Figs. 2 and 3) are cross-sections of these surfaces at the two extreme values as indicated by
Random (no spatial autocorrelation) and Bumpy (high spatial autocorrelation) scenarios

of land cover classes. Random landscape types tend to exhibit unimodal and
two-phase relationships, while in spatially autocorrelated landscapes these
relationships are more complex. The scatter plots indicate that correlation
between LPI cannot be interpreted without information about landscape

composition and configuration.
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Fig. 5. a Scatter-plots among all paired combinations of observed LPIs for Random landscapes
(N =9000). b Scatter-plots among all paired combinations of observed LPIs for Noodles
landscapes (N = 9000). ¢ Scatter-plots among all paired combinations of observed LPIs for
Bumpy landscapes (N = 9000)

4 Using LPI in an inferential role

We have demonstrated one of several possible landscape simulators relying
on composition and configuration parameters (first and second order effects
respectively). After estimating the binary land cover proportion and the
spatial autocorrelation parameter for two images, we can simulate numerous
statistically likely realizations within this parameter space. From the multiple
realizations, empirical distributions for various LPI can be constructed and
compared with a significance test. The expected ranges of variation can be
tested for overlap given a pre-specified confidence interval. This type of
significance testing for pattern comparison is demonstrated in this section
rather than the simple comparison of two LPI values without any
information regarding their expected ranges of variation (e.g., Baskent
1999; Hessburg et al. 1999; Kepner et al. 2000).

Fortin et al. (2003) indicate that given a spatial stochastic process, one can
estimate the parameters from which realizations of that spatial pattern can be
generated. From these realizations we can make observations and take series
of measurements that may be used to describe the pattern or generate
confidence intervals. Knowing the confidence intervals makes it possible to
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make inferences regarding the generating spatial stochastic process or to
differentiate among several spatial processes.

To illustrate the importance of LPI confidence intervals, we have extracted
a set of images from interior British Columbia, Canada (Fig. 6). These images
are from the Earth Observation for Sustainable Development of Forests
(EOSD) data (based on classified Landsat imagery), a joint project of the
Canadian Forest Service and the Canadian Space Agency (Wulder 2002). All
images consisted of 64> pixels and had identical spatial resolutions (30 m).
Four image subsets were selected, with forested percentages of 4.6, 12.5, 41.7,
and 77.3 for landscapes A, B, C, and D, exhibiting spatial autocorrelation
parameters of 0.79, 0.99, 0.99, and 0.96 respectively. It supports the general
notion that spatial autocorrelation in real landscapes is very high.

One of the many possible statistical comparisons of spatial patterns among
landscapes A, B, C, and D is summarized in Fig. 7. Here, we consider only
two LPI, patch density (PD) and the landscape shape index (LSI). We have
generated a scatter plot that defines the location of each landscape within this
two-parameter space. Moreover, 99% confidence intervals provide context
for each landscape point within the parameter space. The location of the
point (solid black circle) along the confidence intervals indicates the actual
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Fig. 6. Four sample landscapes extracted from a dataset of Prince George, Columbia, Canada.
Each image is 64° pixels with a spatial resolution of 30 m. The binary classification separates
forest (white) from non-forest (black). The composition and configuration parameters were
estimated from each image and used to simulate 100 realizations for each pair of estimated
parameters
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Fig. 7. The 99% statistical confidence intervals surrounding each of four landscapes (A, B, C,
and D) for measures of patch density and the landscape shape index. The four landscapes are
extracted from the Prince George, British Columbia, Canada area. The solid black circles
indicate the actual LPI values for the landscapes while the confidence intervals are based on 100
simulated realizations. None of the landscapes differ significantly regarding PD; however, LSI
can be used to significantly discriminate between landscapes A and B and furthermore from both
C and D. Landscapes C and D alone are not significantly different regarding LSI

landscape (i.e., A, B, C, or D), while the confidence intervals themselves were
generated from the empirical simulations. If the confidence intervals between
two landscapes overlap, it can be stated that there is no significant difference
between the two landscapes with respect to the given LPI at the 99%
confidence limit. Thus, landscapes A and B can be considered significantly
different from each other and from landscapes C and D with respect to LSI.
However, landscapes C and D cannot be deemed significantly different
considering the same measurement technique. Similarly, all four landscapes
exhibit overlapping confidence intervals for patch density and therefore the
conclusion of significant difference regarding PD cannot be made. This type
of comparison could be made with any suite of LPI and confidence limit.

5 Discussion

This simulation study has provided insight to the behavior of commonly used
LPI from a spatial stochastic model perspective. The behavior of LPI is
observed as the proportion of land cover classes and/or the level of spatial
autocorrelation changes. It is apparent from the results that even small
differences in land cover proportion or spatial autocorrelation can yield
drastically different LPI values. Conversely, knowing a suite of LPI values
does not necessarily define a particular combination of composition and
configuration of the landscape. While this lack of ““one-to-one mapping’’ has
been suspected, here we report the empirical relationships between patterns
and LPI in a spatial statistical framework as functions of two CAR model
parameters: composition (measured by the proportion of categories) and
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configuration (measured by spatial autocorrelation). Landscapes with
significantly differing spatial patterns may still exhibit ““functional similarity”
in an ecological sense. Thus, simply because two landscape patterns differ
significantly does not specify that the ecological behaviour of species on
those landscapes will behave significantly differently. However, two different
landscape processes may have generated the landscapes.

Expected values and variances of LPI values vary non-linearly as functions
of both composition and configuration parameters and thus, must be
considered jointly. While the effect of composition for binary cases is
symmetric around the 50% land cover proportion (and the minor deviations
from perfect symmetry are due to the spatial stochastic realizations), the
changes due to increasing spatial autocorrelation typically yield much more
variance but dampened LPI ranges.

Testing for significant differences between LPI values, which requires
comparing expected values and variances, is strongly influenced by compo-
sition and configuration; we summarize here the major sensitivities. For
Random landscapes, the number of patches is greatly influenced by class
proportion. NP values (Fig. 2) fluctuate between minimums at 0% and
50% (white) to a maximum at approximately 20% (white). When spatial
autocorrelation is introduced (toward Bumpy landscapes), this relationship
changes drastically, dampening much of the effect seen throughout the range
of proportions (Fig. 3). Under the dampening effect of high spatial
autocorrelation, the steep slope of NP values versus land cover proportion
is only observed at the 15% distribution tails, making statistical comparisons
most likely only at these proportion extremes. The dampening effect also
reduces the maximum range of the index, coinciding with the ecological
reality that as pixels aggregate into larger patches, there are physically fewer
patches, and that the proportion of classes must become increasingly uneven.
As with the observed critical value in percolation theory, the observed result
changes more rapidly once that threshold has been exceeded. Patch density
(Figs. 2 and 3) exhibits these same characteristics.

Edge density and contagion were found to behave similarly to those results
presented in Hargis et al. (1998) for their work with simulated disturbance
landscapes. They indicate that ED and CONTAG have a strong negative
correlation, which can be seen by comparing box-plot diagrams (Figs. 2 and
3) and viewing the scatter-plots (Fig. 4). Our results however, further
indicate that the simple negative correlation becomes increasingly variable
for spatially autocorrelated landscapes, especially when ED is low. Hargis
et al. (1998) also allude to the possibility that land cover class proportion
may be a surrogate for ED, CONTAG, and fractal measures of patch shape.
Interpretation of edge density follows the logic that as the proportion of
classes becomes increasingly uneven, aggregation must be occurring, and
thus fewer edges are present. This reduction of edges coincides with reduced
numbers of patches. However, for spatially autocorrelated landscapes, the
index variability within each proportion range is much greater than for
Random landscapes. Behavior of the LSI (Figs. 2 and 3) is almost identical to
that of ED because only edge length controls computation of the index.
Based on preliminary analysis, we predict that when multiple categories are
considered, this shape index will vary depending on the observed class
contrasts.
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The AWMSI (Figs. 2 and 3) exhibits a very interesting empirical distribu-
tion. When the proportion of classes becomes approximately even (~40 to
60% white), index values increase suddenly for Random landscapes. Not only
do values tend to increase, variability in values increases compared to the
extreme proportional cases. This jump in values is not as evident with spatially
autocorrelated landscapes, however, the variability in AWMSI values is. This
LPI becomes extremely difficult to interpret because its values can be identical
for landscapes exhibiting a vast continuum of class proportions. As with NP
and PD, and to a lesser extent LSI and ED, if proportions are not extreme,
conclusions of significant difference between landscapes cannot be made. The
variability in CONTAG values (Figs. 2 and 3) increases as the class
proportions are approximately even and is the only LPI considered here
which explicitly accounts for cell neighbor effects. In general, the variability of
CONTAG is very small (even for autocorrelated — Bumpy) landscapes and
therefore is the best suited for differentiating between landscape patterns
arising from varying spatial processes within this suite of six LPI.

The cross scatter plots in Fig. 4 suggest that relationships between pairs of
LPI are typically non-linear. This non-linearity implies that linear ordination
techniques often applied to LPI analyses (Riitters et al. 1995) may not be
suitable to characterize these relationships. Not only are these relationships
often non-linear, they sometimes possess two distinct phases or different
levels of variability along each gradient. Interestingly, these relationships
change dramatically when spatial autocorrelation is introduced, limiting
general commentary about LPI interactions. When Riitters et al. (1995)
compared 85 land cover maps with varying number of classes (17 to 34) and
reported correlations between pairs of LPI, it is likely that their coefficients
are biased due to the significant impact that composition and configuration
have on the expected value and variability of LPI.

The literature boasts numerous applications that rely on LPI as a tool for
monitoring change detection (e.g., Diaz 1996; Franklin et al. 2000).
However, the existing tools may not provide the results that meet the goals
of the practitioners in that the statistical tests have not been fully developed.
Although we report only our results for stationary binary landscapes, the
strong sensitivity of LPI to composition and configuration suggests that
comparisons made between landscapes without explicit consideration of
composition and configuration could yield uncertain conclusions. Although
our approach could be extended to learn and simulate non-stationary
patterns, the estimation of model parameters becomes increasingly difficult.
The number of parameters (P) increases dramatically with the size and
complexity of the neighbourhood (N) and the number of categories (C) (e.g.,
P = CM). This relationship, with 4-neighbours and 2 categories, requires the
estimation of 16 parameters and if we were to retain the same neighbour-
hood, but increase the number of categories to 5, we would need to estimate
625 parameters.

6 Conclusions

Comparison of LPI is potentially an emerging and frequent task (e.g., when
maps of an area from two different times, or when two different areas are



348 T.K. Remmel, F. Csillag

compared). Testing whether two landscape pattern indices differ significantly
should become a standard, rigorous approach that can provide statistical
insight to spatial processes and their analyses. Although we could theoret-
ically generate extensive lookup tables (based solely on our simulations) for
all combinations of proportion and spatial autocorrelation to allow fast
comparison of LPI, this would be impractical and extremely labour
intensive. Thus, we have operationalized the comparison processes as
described in section 4. Given two categorical images, the composition and
configuration of each should be estimated. Estimation of composition and
configuration must be carried out with great care because their values cannot
be estimated independently (Fortin et al. 2003); description of the Markov-
Chain Monte-Carlo (MCMC) methods required for this estimation is
beyond the scope of this study.

Once the parameters have been estimated, the simulations can be
conducted based on only these parameters and LPI can be computed for
each realization. Then, the multitude of LPI results is summarized to
generate confidence intervals at some specified level (e.g., 95%, 99%). If two
distinct data sets exhibit an overlap exceeding the specified confidence
interval for a given LPI, that measurement of pattern cannot be considered
to differ significantly. Conversely, if two confidence intervals do not overlap,
the hypothesis of similarity (lack of difference) between the two landscapes
can be rejected.

Note that extending the presented methodology to multinomial cases is
relatively simple. We are currently developing several methods to approach
this task; one method being considered would slice the simulated data
histograms (with a specified spatial autocorrelation) at the appropriate
proportions. While this approach is computationally far from trivial, it is
relatively easy to implement, and in preliminary trials, using a moderate
number of simulated realizations and modest image sizes, results can be
processed in an operationally timely fashion.

This paper has laid the foundation for our future landscape pattern studies
aimed at further elucidating the behavior of LPI. The conceptually and
computationally most challenging task is to consider non-stationary
processes, that is, landscapes where either the proportions of categories, or
their spatial association, or both vary within the extent of the study. The
concept of stationarity, as a requirement for ““homogeneity’’ across the pro-
cesses shaping the landscape, appears in somewhat vague forms in the
ecological literature (Wiens 1989; Gustafson 1998), but it is usually not an
explicitly recognized criterion to apply LPI (Fortin et al. 2003). This might
have been partly due to the computational-statistical difficulties in testing for
stationarity, but new developments in this area are promising (Keitt 2000;
Atkinson 2001; Ord and Getis 2001; Csillag et al. 2001; Atkinson and Csillag
2002; Csillag and Kabos 2002). Although our simulator is limited in the
range of landscapes that can be produced, we are currently working to
develop simulators that can generate anthropogenic looking landscapes. We
are considering two methods to approach this problem: (1) to simulate non-
stationary landscapes directly, and (2) to partition the entire data set into
stationary subsets. The first approach will require extensive parameter
estimation techniques to be developed while the second will rely on rigorous
landscape partitioning algorithms. When we can constructively combine
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computational, statistical and ecological concepts, we will be able to
ultimately link pattern and process leading to improved understanding and
unbiased judgment.
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