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Abstract

Context With rapidly expanding urban regions, the

effects of land cover changes on urban surface

temperatures and the consequences of these changes

for human health are becoming progressively larger

problems.

Objectives We investigated residential parcel and

neighborhood scale variations in urban land surface

temperature, land cover, and residents’ perceptions of

landscapes and heat illnesses in the subtropical desert

city of Phoenix, AZ USA.

Methods We conducted an airborne imaging cam-

paign that acquired high resolution urban land surface

temperature data (7 m/pixel) during the day and night.

We performed a geographic overlay of these data with

high resolution land cover maps, parcel boundaries,

neighborhood boundaries, and a household survey.

Results Land cover composition, including percent-

ages of vegetated, building, and road areas, and

values for NDVI, and albedo, was correlated with

residential parcel surface temperatures and the effects

differed between day and night. Vegetation was more

effective at cooling hotter neighborhoods. We found
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consistencies between heat risk factors in neighbor-

hood environments and residents’ perceptions of these

factors. Symptoms of heat-related illness were corre-

lated with parcel scale surface temperature patterns

during the daytime but no corresponding relationship

was observed with nighttime surface temperatures.

Conclusions Residents’ experiences of heat vulnera-

bility were related to the daytime land surface thermal

environment, which is influenced by micro-scale vari-

ation in land cover composition. These results provide a

first look at parcel-scale causes and consequences of

urban surface temperature variation and provide a

critically needed perspective on heat vulnerability

assessment studies conducted at much coarser scales.

Keywords Urban heat island � Parcel � MASTER �
Land surface temperature � Social surveys �
Vulnerability

Introduction

Urbanization is associated with increasing air temper-

atures in cities (Oke 1973), and it also leads to land

surface warming and increasing land surface temper-

ature (LST) heterogeneity (Voogt and Oke 2003;

Jenerette et al. 2007; Cao et al. 2010; Imhoff et al.

2010; Peng et al. 2012; Zhou et al. 2014). Studies of

urban LST have primarily evaluated midday spatial

variation at neighborhood or coarser scales, such as the

city, zip code, and census tract boundaries. However,

extensive scale-dependent variation in LST is

expected throughout any given day due to different

speeds of warming within the complex spatial struc-

ture of urban environments (Li et al. 2011; Weng et al.

2011). Furthermore, the human consequences of urban

LST warming are not well characterized at very fine

spatial resolutions, such as individual residential

parcels, although several studies have found LST

variation affects spatial variability in the risk of heat-

related mortality at neighborhood scales (Johnson

et al. 2009; Buscail et al. 2012; Hondula et al. 2012;

Johnson et al. 2012; Harlan et al. 2013).

LST spatial variation is influenced by material

properties such as heat capacity, thermal conductivity,

and thermal inertia (Elachi 1987), and several studies

have proposed that local land cover composition is a

primary determinant of LST patterns (Li et al. 2011;

Connors et al. 2013; Zhou et al. 2014). Increasing

vegetated land cover has been repeatedly shown to

lower LST through radiation interception and shading

and increases in latent heat fluxes associated with

transpiration (Jenerette et al. 2007; Kalma et al. 2008;

Kustas and Anderson 2009; Jenerette et al. 2011;

Xiang et al. 2014; Zhou et al. 2014). In contrast, built

surfaces, including buildings and roads, are generally

warmer than natural surfaces (Buyantuyev and Wu

2010; Zhou et al. 2014). Several studies have shown

that measurement scale affects the amount of observed

variability in land cover—LST relationships (Liang

and Weng 2008; Weng et al. 2011; Song et al. 2014),

but relationships between urban land cover and LST

have almost exclusively been evaluated using satel-

lite-based thermal sensors on Landsat ETM? (60 m

pixels) or ASTER (90 m pixels) instruments (e.g. Li

et al. 2011; Myint et al. 2013; Song et al. 2014). At

these resolutions, extensive mixing of land covers may

obscure stronger or different relationships at finer

resolutions where more urban land cover variability

occurs (Zhou et al. 2011). An evaluation of urban LST

variation at micro scales, such as \10 m, has been

noted as an important research goal for improved

understanding of the biophysical causes urban heat

vulnerability (Small 2003; Deng and Wu 2013; Zhan

et al. 2013; Song et al. 2014).

In addition to improved spatial resolution, extending

LST measurements to both daytime and nighttime

allows for analysis of the differences in causes and

consequences of spatial patterns of daily maximum and

minimum urban LST (Buyantuyev and Wu 2010; Myint

et al. 2013). Because vegetation and high albedo

surfaces are cooler during the day and built surfaces

are warmer, these trends may continue at night due to

differences in stored heat (Buyantuyev and Wu 2010;

Myint et al. 2013). Alternatively, trees may trap infrared

radiation at night and lead to increased surface warming.

Although the upward facing built materials are warmer

during the day, they may more effectively radiate heat at

night, leading to lower nighttime LST while still

radiating heat horizontally. Albedo, as a property

associated with an illuminated surface, may be unrelated

to nighttime LST. Improved understanding of the

biophysical drivers of urban LST will require reconcil-

ing the differences in day and night LST variation.

Characterizing the biophysical basis of LST spatial

and temporal variations and connecting LST with

residents’ lived experiences should help us to better
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understand the determinants of variability in heat

vulnerability and implement better climate adapta-

tion strategies for cities. In the large literature that

examines air temperature and heat-related mortality,

there is considerable discussion and debate about the

relative importance of daily and lagged minimum,

mean, and maximum temperature effects on health

outcome (Kalkstein 1991; Basu and Samet 2002;

Hondula and Barnett 2014; Petitti et al. 2015).

Studies in different places and weather conditions

have reached different conclusions. The important

question about the effects of minimum and maximum

temperatures has rarely been evaluated using urban

LST because there have been many fewer studies that

consider LST and most of them exclusively used

either daytime (e.g. Harlan et al. 2013) or nighttime

data (Uejio et al. 2011). One exception was Laaidi

et al. (2012), who examined minimum, mean, and

maximum surface temperatures, and found that

minimum temperature was associated with heat

deaths among the elderly during a heat wave in

Paris. As these authors pointed out, variability in

surface temperatures measured over the extent of the

city more closely approximates the actual living

conditions of urban residents than air temperature

measured at weather stations that are not in close

proximity to people (Laaidi et al. 2012).

In this study, we present new results from high

resolution (7 m) airborne thermal imagery acquired

over the Phoenix, AZ USA metropolitan region. We

link this high resolution thermal data with social

survey data on perceptions of landscapes and heat

illnesses that were collected during the same year. We

use the geographic intersection of these data in

conjunction with a sub-meter land cover classification

and residential parcel boundaries to answer two

questions: (1) How does landscape composition

influence LST variability during the day and night at

parcel and neighborhood scales? (2) Do parcel and

neighborhood surface characteristics correspond to

residents’ perceptions of their local landscapes and

self-reported symptoms of heat-related illnesses?

Answering these questions will improve understand-

ing of how land-cover patterns influence LST in

residential environments and the potential conse-

quences of LST for residents. These are essential

pieces of the puzzle for designing neighborhoods that

reduce human vulnerability to increasing urban

temperatures.

Methods

Site description

The Phoenix, AZ USA metropolitan region (popula-

tion 4.3 million) is a well-studied model system that

has been useful for learning about many aspects of

urban ecology and climate (Grimm and Redman 2004;

Chow et al. 2012). This metropolis has a hot,

subtropical desert climate (Koppen classification

BWh) and features substantial variation in vegetation

and built surfaces associated with residential dwell-

ings. Phoenix is an extreme endpoint of the urban heat

spectrum within the United States (Stone 2012). The

region has a pronounced nighttime urban heat island

(UHI) (Chow et al. 2012), measured in air temperature

and LST, and is home to one of the fastest growing

UHIs within the United States (Stone 2012). Overall,

and consistent with cities throughout the southwestern

United States, the city has more vegetation than the

outlying desert and higher-income neighborhoods

(census tracts) have more vegetation than lower-

income neighborhoods (Jenerette et al. 2013). Vege-

tation, in turn, is correlated with LST and higher-

income neighborhoods are cooler (Jenerette et al.

2007; Buyantuyev and Wu 2010; Jenerette et al.

2011).

Microscale LST: MASTER flight and data

processing

We conducted an airborne LST data collection

campaign over the Phoenix metropolitan area during

a 5-day period in 2011: July 12–13 (daytime flights

collected from 10 am to 1 pm local time; -7 from

UTC) and July 15–16 (nighttime flights collected from

12:30–3 am local time). These times were selected to

be representative of mid-day and mid-night periods

outside the main transitions associated with sunrise or

sunset. For this campaign the MODIS/ASTER Sim-

ulator, or MASTER, instrument was mounted on a

Beechcraft B-200 aircraft and flown to obtain high

spatial resolution data. The MASTER sensor acquires

data over the visible through mid-infrared wave-

lengths (0.46–12.817 lm) in 50 spectral bands (Hook

et al. 2001), which were used to derive LST, normal-

ized difference vegetation index (NDVI), and albedo

at approximately 7 m/pixel. These imagery data

measure a combination of the top of urban canopy
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and ground data, which may be distinct from temper-

ature patterns only at the ground (Goldreich 2006).

Although the original intent was to collect a true

diurnal dataset, this was not possible due to the large

area of data collection and pilot flight rules that

constrain daily flying time and mandate stand-down

periods for flight safety. Fortuitously, a stable weather

pattern prevailed during the week of July 12 that

enabled collection of an approximate diurnal dataset.

During this period, mean daily maximum air temper-

ature was 40.1 �C and differed less than 1.6 �C
between sampling days.

We performed atmospheric correction to obtain

apparent surface reflectance, temperature, and emis-

sivity, which allows for comparison of the flight line

data collected on four different days. The ENVI/IDL

image processing environment was used to perform all

processing of the MASTER data. Atmospheric cor-

rection of the mid-infrared wavelength data was

accomplished using an in-scene atmospheric compen-

sation technique (Johnson and Young 1998). We used

an emissivity normalization approach (Kealy and

Hook 1993) to obtain LST from the MASTER

data—an emissivity value of 0.98 was used to

calculate the temperature in each band of the

MASTER thermal IR data for each pixel, and then

the highest temperature obtained was used to create

the LST layer. That temperature was then used to

invert the Planck function to calculate emissivity in

each of the bands. Atmospheric correction of the

visible through shortwave infrared wavelength data

was accomplished using the quick atmospheric cor-

rection (QUAC) algorithm (Bernstein et al. 2005)

within ENVI/IDL. Reasonableness of both LST and

apparent reflectance results were assessed qualita-

tively by random examination of returned pixel values

(surface temperature) and image spectra (vegetation

and soil pixel spectra were compared to laboratory

spectra of similar materials).

In addition to LST we also processed MASTER

data to obtain the NDVI, a measure of vegetation

(Tucker 1979), and an estimate of surface albedo.

NDVI was calculated as follows:

NDVI ¼ Band9 � Band5ð Þ= Band9 þ Band5ð Þ

where Band9 and Band5 correspond to MASTER

spectral channels 9 (0.87 lm) and 5 (0.66 lm).

Albedo, the ratio of upwelling to downwelling radia-

tive flux at the surface, was estimated by converting

narrowband to broadband albedo using an empirical

formula previously developed for the MODIS sensor

(Liang 2001). Specifically, we derived the total visible

broadband albedo (avis) as follows

avis ¼ 0:331a5 þ 0:424a1 þ 0:246a3

where a1, a3, and a5 are reflectances in MASTER

spectral channels 1 (0.46 lm), 3 (0.54 lm), and 5

(0.66 lm), respectively.

Phoenix Area Social Survey

The 2011 Phoenix Area Social Survey (PASS) was the

second wave of a household survey conducted every

5 years in the metropolitan area to study human-

environment interactions in an urban setting. It is part

of the long-term monitoring conducted by the Central

Arizona—Phoenix Long-Term Ecological Research

(CAP LTER) project (http://caplter.asu.edu/research/

long-term-monitoring/). A two-stage sampling design

was used for PASS. First, the sample of PASS

neighborhoods was drawn mostly from long-term

ecological monitoring sites that are part of the CAP

LTER project (Grimm and Redman 2004). U.S. Cen-

sus Bureau block groups (i.e., relatively homogeneous

populations living within an area of approximately

0.65 km2) were used to define boundaries of PASS

neighborhoods. We selected a sample of 45 PASS

neighborhoods (39 from long-term monitoring sites

and six other CAP LTER research sites) stratified by

location (urban, suburban, fringe) and median house-

hold income. Percent retired and percent minority

residents were also considered in the selection to

ensure that different types of residential situations

were represented (Table 1).

Second, the sampling frame for households within

each neighborhood was a list of eligible residential

addresses created from maps and the tax assessor’s

parcel numbers (APN), which included single family

and multi-family houses, apartment buildings, and

mobile home parks. A random sample of 40 house-

holds was selected within each neighborhood.

Respondents were offered a small financial incentive

for participation and they could complete the survey

online, by telephone, or in person with an interviewer.

All materials were available in English and Spanish

and repeated follow-up efforts with non-respondents

were on-going through the study period. A total of 806
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respondents in 45 neighborhoods, ages 18 or older

(one per household), completed the survey for a

minimum response rate of 43.4 % using the standard

definitions of the American Association for Public

Opinion Research (2008). All surveys were completed

between May 26 and December 31, 2011.

The survey asked respondents’ opinions about

quality of life and condition of the natural environment

in their neighborhoods and in the region. Questions

about land use and climate were two areas of

emphasis. We selected three questions from PASS as

indicators of residents’ perceptions of environmental

conditions in their neighborhoods and one question on

self-reported heat illnesses (Table 2). The question

about experiencing heat-related symptoms was asked

in the survey context of 10 other questions about heat

and the symptoms we included in the question

(Table 2) were excerpted from the medical conditions

directly attributable to excessive heat exposure

Table 1 Stratification of the 2011 Phoenix Area Social Survey

neighborhoods and survey respondents

Neighborhood

classification

Neighborhoods

(n)

Respondents

(n)

Low income, urban core 6 97

Low income, suburban 6 110

Low income, fringe 2 34

Subtotal low income 14 241

Middle income, urban core 6 105

Middle income, suburban 6 111

Middle income, fringe 7 136

Subtotal middle income 19 352

High income, urban core 1 20

High income, suburban 5 94

High income, fringe 6 99

Subtotal high income 12 213

Grand total 45 806

Median annual household income for each neighborhood was

obtained from 2000 U.S. Census block group data and

classified as follows: low income (\$35,000); middle income

($35,000–$70,000); high income ([$70,000). Urban core

neighborhoods were within 8 km of downtown Phoenix or

within 2.4 km of the 7 other large-city downtowns. Fringe

areas had a moderate amount of undeveloped land within 1.6

km of the neighborhood in 2005. All other neighborhoods were

classified as suburban. At least 30 % of residents in five

neighborhoods were 65 years or older in 2010 (retirement

communities) and at least 50 % of residents in ten

neighborhoods were non-Hispanic white (Hispanic, African

American, Native American, or Asian/Pacific Islander) in 2010

Table 2 Responses of participants to questions in the 2011

Phoenix Area Social Survey (n = 806)

Survey question Response

% n

During the summer of 2010, do you think your neighborhood was
(_) than most other neighborhoods in the Valley?

A lot cooler 0.9 7

A little cooler 14 117

About the same temperature 22 174

A little hotter 9.4 76

A lot hotter 45 366

Are you (_) with trees that provide shade in your neighborhood?

Very satisfied 27 215

Somewhat satisfied 36 292

Somewhat dissatisfied 22 178

Very dissatisfied 13 106

Please indicate whether having too many paved surfaces such as
roads or parking lots is a (_) in your neighborhood

Big problem 5.8 47

Little problem 18 142

Not a problem at all 74 594

During last summer, did anyone in your household have symptoms
related to heat or high temperatures such as leg cramps, dry
mouth, dizziness, fatigue, fainting, rapid heartbeat or
hallucinations?

Yes 30 245

No 60 486

Do any of the following prevent you from using your air-
conditioning when the weather is hot? Please select all that apply

Cost of electricity 36 291

Unit doesn’t work 5.3 43

Cost of repairs 4.1 33

Noise 1.0 8

Do not have an air conditioner 3.6 29

Other 1.9 15

Summary: had at least one impediment 45.3 365

Missing and ‘‘don’t know’’ answers were omitted from

calculations on an item-by-item basis and 100 % was based

on number of valid answers for each question, or in the case of

the question on impediments to using air conditioning, valid

answers for each item. (For the question on use of air

conditioning, respondents could select multiple answers).

Responses to the question on neighborhood temperature were

coded so that higher scores indicate hotter neighborhood

relative to others. Responses to the question on satisfaction

with trees were coded so that higher scores indicate higher

satisfaction. Responses to the question on too much pavement

were coded so that higher scores indicate a smaller problem

(higher satisfaction). Subsamples of respondents in

neighborhoods that correspond to useable imagery from the

daytime and nighttime MASTER land cover dataset (n = 640

and 695, respectively) were used in the analyses (see

‘‘Geoprocessing: MASTER georectification and data

overlays’’ section)
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published by the United States Environmental Protec-

tion Agency (2006, p. 11). Self-rated health questions

are widely used in the health sciences and other fields

because, over decades of research, they have been

found to be strong correlates of clinical conditions

(Lee 2015) and have been used in assessments of heat

vulnerability (Belanger et al. 2015).

In evaluating the effect of LST on respondents’

reported experiences with heat illness, we used a

question about economic impediments to home air

conditioning. Regulating indoor temperatures with air

conditioning is an important method of coping with

extreme outdoor temperatures in Phoenix and inability

to access this coping mechanism could increase the

likelihood of heat illness. We tested for a potentially

confounding effect of ambient outdoor temperature on

respondents’ answers to the heat illness question by

evaluating the influence of maximum air temperature

(obtained from Sky Harbor Airport) on the survey

response date. The Arizona State University Institu-

tional Review Board approved the use of PASS data

for this study.

Geoprocessing: MASTER georectification

and data overlays

For this study, MASTER data were extracted for 41

(out of the total 45) PASS neighborhoods within the

flight boundary. The atmospherically corrected MAS-

TER data were processed to at-sensor radiance but did

not include geolocation data. We georeferenced each

neighborhood to align with the corresponding

National Agriculture Imagery Program (NAIP) data.

This process included visually locating and matching

feature points in the MASTER image and the base

NAIP image. These feature points were used to create

a polynomial geometric transformation model that

aligned the MASTER image to the same coordinate

system of the base image. In addition we incorporated

a nearest neighbor resampling so that corresponding

pixels represent the same objects. For each neighbor-

hood, a different number of matching points was used

depending on its size and level of distortion in the

MASTER data. All neighborhoods were georefer-

enced to a target registration error of no more than 0.5

pixels. In cases where severe distortions of the original

MASTER data did not allow registration to this level

of accuracy, registration to the lowest possible error

was performed. In four neighborhoods the daytime

thermal images were too distorted for acceptable ge-

oreferencing; these highly distorted images were not

included in further analyses. Registration of the higher

resolution visible reflectance data precluded the use of

two more neighborhoods for NDVI or albedo data.

The final processed MASTER dataset included high

spatial resolution LST, NDVI, albedo, and direct

estimates of emissivity that were atmospherically

corrected, and georeferencing (Fig. 1).

We linked the MASTER and PASS data with a high

resolution (1 m) land cover classification for the

Phoenix metropolitan region, which had a classifica-

tion accuracy of 92 % and a kappa statistic of 0.91 (Li

et al. 2014). This classification was conducted using

NAIP aerial photography and following an object-

oriented expert rule algorithm (Baatz et al. 2008),

which is becoming increasingly common for urban

regions (Myint et al. 2011; Grove et al. 2014).

Preliminary analyses showed that 2.8 % of parcels

had no observed built land cover. The presence of trees

above the built surface may have obscured buildings

and there may also have been errors in the NAIP data

or land cover classification. We overlaid the land

cover classification and MASTER data with parcel

boundaries obtained from the Maricopa County Tax

Assessors office and extracted all residential plots

(Fig. 2). A complete geographic overlay of land cover,

LST, and parcel boundaries for 37 PASS neighbor-

hoods during the day (n parcels = 21,589 and n

survey respondents = 640) and 41 neighborhoods at

night (n parcels = 25,011 and n survey respon-

dents = 695) was available for our analyses.

Image acquisition occurred over approximately a

3-h flight period and therefore we evaluated the

potential for LST to increase during daytime sampling

and decrease during nighttime sampling. We com-

pared means across all parcels in maximum, mini-

mum, and mean LST. During the day we only

observed increasing LST in the minimum parcel

temperatures and, therefore, no correction was needed.

At night, we observed a significant cooling in the

maximum, minimum, and mean parcel temperatures

over the flight periods. We used linear regression to

identify the rate of cooling and then corrected all

parcel temperatures to the median sampling time

(approximately 1 am local time). Subsequent analyses

conducted using both time-corrected and uncorrected

data had consistent results for correlation analyses and

significance tests.
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Analysis

We used a suite of standard statistical tools including

correlations, linear regressions, and generalized liner

models (GLM) for data analysis; all statistical anal-

yses were conducted in Matlab 2013 (The Mathworks,

Natick, MA). For each individual residential parcel we

determined the means of LST, NDVI, and albedo and

proportions of each land cover type. We analyzed the

relationships between LST and the proportions of tree,

grass, built, and road area at the parcel scale using a

non-spatial linear correlation analysis. Because there

are many thousands of parcels, all results at the parcel

scale were statistically significant, consistent with

most ‘‘big-data’’ analyses and, therefore, we focused

on effect sizes in these analyses (Nuzzo 2014).

We also conducted analyses that compared

parcel variation in LST between different neigh-

borhoods. We computed regressions between mean

parcel LST and NDVI within each single neigh-

borhood in order to compare differences in vege-

tated cooling between neighborhoods. We

compared expected bare surface temperatures (i.e.

the intercepts of the linear regressions) with the

LST-cooling effectiveness of vegetation (i.e. the

slopes of the NDVI-LST regressions). This analysis

showed the relative sensitivity of LST to vegetation

abundance across neighborhoods.

We examined survey responses at the parcel scale

and compared mean parcel LST for the group of

respondents who reported symptoms of heat illness

with the group reporting no symptoms. To account for

differences in capacity to cope with heat, we restricted

some analyses to the subsample of respondents who

reported an impediment to using home air condition-

ing. These analyses were conducted using GLM for

binomial distributions. At the neighborhood scale we

used regression to evaluate the effects of mean

neighborhood LST and land cover characteristics on

aggregate measures (means) of respondents’ percep-

tions of the local landscape and experiences of heat

illness symptoms.

Results

Parcel land cover and LST relationships

Mean LST of individual residential parcels varied

tremendously: daytime parcels ranged between 35.1

Fig. 1 Representative MASTER LST measurements for a highly vegetated neighborhood (upper) and minimally vegetated

neighborhood (lower). MASTER bands 9, 5, and 3 were used for RGB display shown as false-color composites on the left
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and 67.4 �C and nighttime parcels ranged between

15.1 and 32.1 �C.

At the parcel scale, some measures of residential

land cover were correlated with LST. During the

daytime (Fig. 3), parcel-scale mean LST was inver-

sely correlated with vegetation density. This finding

was supported across three different measures of

vegetation density: mean NDVI and the proportions of

tree or grass cover. Tree cover had the highest

correlation with LST (r = -0.44) and grass cover

had the lowest correlation (r = -0.27). Built surface

area, including roads, and albedo were weakly posi-

tively associated with mean daytime parcel LST. At

night (Fig. 4) many of the relationships were reversed.

Vegetation, quantified as NDVI, tree area, or grass

area, was weakly positively associated with nighttime

LST. As in the daytime, tree area had the highest of

these correlations at night, although the relationship

Fig. 2 Representative overlay of land cover data, parcel

boundaries, and MASTER LST measurements for a highly

vegetated neighborhood. The upper left and upper right show

day and night time LST (�C) and parcel boundaries. The lower

left shows land-cover classification and parcel boundaries. The

lower right shows a detail subset of the nighttime LST and

parcel delineations
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with LST was much weaker at night than in the day

(r = 0.20). Larger areas of built surfaces and higher

albedo were associated with cooler residential parcel

LST at night (r = -0.36 and -0.23, respectively).

Roads were minimally positively associated with

nighttime LST. For all of these daytime and nighttime

relationships there were large amounts of unexplained

variation in mean LST at the parcel scale.

Regressions of parcel daytime LST on NDVI

calculated independently for each neighborhood

revealed that vegetation had a significant cooling

effect within all neighborhoods. The magnitude of

these effects, however, varied tremendously between

neighborhoods. The slope magnitude between LST

and NDVI in Fig. 5 is a quantification of the

cooling effectiveness for differences in NDVI

between the neighborhoods. Notably, the slope was

strongly related to the regression intercept for each

neighborhood, such that vegetation was more effec-

tive at cooling hotter neighborhoods (p\ 0.001;

R2 = 0.54).

Neighborhood land cover, LST and household

income

Consistent with previous findings in the Phoenix

region, more impoverished neighborhoods were hotter

(r = 0.47, p\ 0.01; proportion of neighborhood

households living below the federal poverty line and

mean residential parcel daytime LST) and had less

vegetation (r = -0.45; proportion of households in

poverty and proportional cover of both grass and trees

in parcels). Mean neighborhood daytime LST was

inversely correlated with vegetation (r = -0.37,

p\ 0.01; proportion of neighborhood tree and grass

area with mean daytime LST).

Micro-scale environments, residents’ perceptions,

and symptoms of heat illness

Mean daytime LST in the PASS neighborhoods

ranged from 40 to 55 �C, tree area varied from 1.2 to

26.8 %, and road area varied from 3.7 to 53 %. Survey
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respondents also varied widely in their perceptions of

neighborhood environmental conditions and they used

the full spectrum of available answers for the survey

questions (Table 2). Residents’ perceptions of tem-

perature and land cover correlated with empirical

observations of these characteristics (Fig. 6). Resi-

dents’ mean perception of neighborhood temperature

relative to other neighborhoods on a five-point scale

(higher values indicate a hotter neighborhood) was

higher in neighborhoods with higher daytime LST

(p = 0.002, R2 = 0.23). No relationship was detected

between perception of relative neighborhood temper-

ature and nighttime LST (p[ 0.3). Perceptions of

drivers of LST were also consistent with observed

data. Residents’ mean satisfaction with shade trees in

their neighborhood on a four-point scale (higher

values indicate more satisfaction) was positively

related to percentage of neighborhood area covered

by trees (p = 0.006, R2 = 0.18). Residents’ mean

perception of the magnitude of paved surfaces as a

neighborhood problem on a three-point scale (higher

values indicate smaller problem, thus higher satisfac-

tion) was negatively related to road area (p = 0.002,

R2 = 0.23).

The frequency of self-reported heat- related symp-

toms was correlated with daytime LST at both the

parcel and neighborhood scales. The mean parcel

daytime LST was significantly higher (0.93 �C,

p\ 0.001) for respondents who reported a heat-

related illness in their household than for those

reporting no heat related illnesses (Table 3). Further-

more, within the subgroup of respondents who had

impediments to using home air conditioning, the

parcel daytime LST difference between those who

reported heat illness and those who did not was more

than 50 % higher (1.52 �C, p\ 0.001) than in the

whole sample. This means the effect of parcel daytime

surface temperature on heat illness was greater for

people with reduced access to home air conditioning.

The relationship between parcel nighttime LST and

reported heat illness was not statistically significant

for the whole sample or for the subgroup with

restricted access to air conditioning. Daytime maxi-

mum air temperature on the day of survey completion

did not have a statistically significant effect on the

likelihood of reporting heat symptoms, indicating that

it did not affect the results of our study.

At the neighborhood scale, the incidence of expe-

riencing heat illness varied between 5 and 53 % of

residents. An exponential increase in the rate of
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Fig. 5 Neighborhood variation in average parcel-scale daytime

vegetative cooling (quantified as the regression slope between

NDVI and LST) effect in relation to projected bare surface

temperature (regression p\ 0.001, R2 = 0.54). Each datum

represents a single neighborhood
Fig. 6 PASS respondents’ perceptions of their neighborhoods

and neighborhood conditions observed by MASTER. Upper

panel shows mean perception of relative neighborhood temper-

ature and observed daytime neighborhood mean temperature

(p = 0.002; R2 = 0.23). Middle panel shows mean satisfaction

with neighborhood trees and neighborhood tree area (p\ 0.006;

R2 = 0.18). Lower panel shows mean satisfaction with amount

of roads and paved area (p = 0.002; R2 = 0.23). For all panels

the scale of y-axis represents range of possible survey answers.

Each datum represents a single neighborhood
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reported heat-related illness was associated with

neighborhood daytime LST (Fig. 7, p = 0.011;

R2 = 0.42). Variation in nighttime LST was not

correlated with reported symptoms of heat-related

illness at the neighborhood scale (p[ 0.1).

Discussion

Fine resolution LST data coupled with comprehensive

land cover maps, household surveys, and residential

parcel delineations provide a robust description of the

biophysical environment of homes and experiences

with heat of the occupants. In this first parcel scale

evaluation of land cover composition and LST vari-

ation, our results showed large differences in day and

night LST accompanied by moderate couplings of

LST with some land cover characteristics that differed

between day and night. There was consistency

between residents’ perceptions of their neighborhood

environments and empirically measured temperature

and land covers. Using self-reported symptoms of heat

illnesses, we found heat-related health impacts in the

Phoenix region were positively associated with day-

time LST of the respondent’s residential parcel and

with neighborhood daytime LST.

Improving understanding of parcel

and neighborhood LST variation

Both daytime and nighttime surface temperatures

were influenced by characteristics of the vegetated and

built land covers at the parcel scale, which is

consistent with previous findings at neighborhood

scales (Weng et al. 2011; Myint et al. 2013). Of

importance for designing heat mitigation strategies,

the magnitude and direction of the relationships

differed between day and night. Strategies to reduce

day and night LST may differ in their effectiveness or

even be in opposition. The hypothesis that vegetation-

based LST cooling during the day is dominated by

evaporative energy partitioning was supported by

consistent results for all the greenness metrics—NDVI

mean and percentages of tree cover or grass cover.

Among these different vegetation variables, tree cover

Table 3 Differences in parcel land surface and air temperature (�C) between groups of PASS respondents who reported yes or no for

experiencing household heat-related illnesses in the summer of 2010

Temperature metric (�C) No heat illness

symptoms

Heat illness

symptoms

GLM p

value

All respondents Daytime LST mean 49.05 (3.71) 49.98 (3.83) p\ 0.001

Nighttime LST mean 23.95 (1.66) 23.84 (1.71) p = 0.107

Maximum Tair day of

survey

35.98 (9.23) 35.12 (9.85) p = 0.258

Reduced access to air

conditioning

Daytime LST mean 48.60 (3.67) 50.12 (4.15) p\ 0.001

Nighttime LST mean 23.92 (1.77) 23.92 (1.67) p = 0.197

Maximum Tair day of

survey

35.75 (8.91) 37.28 (8.25) p = 0.491

Values in cells represent means (standard deviations) of temperature for the individual parcels of respondents during daytime, means

(standard deviations) of temperature for the individual parcels of respondents during the nighttime, and the maximum air temperature

at Sky Harbor Airport on the day of survey response. The upper panel represents the 2011 PASS sample. The lower panel represents

PASS respondents who reported an impediment to using air conditioning in their home (too expensive to operate, broken unit, etc.).

Statistical significance was assessed through a GLM for binomial distribution

Fig. 7 Proportion of PASS respondents reporting someone in

their household had suffered from symptoms related to heat

illness during summer and corresponding neighborhood mean

daytime LST (exponential regression; p = 0.011; R2 = 0.42).

Each datum represents a single neighborhood
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was the strongest correlate, which supports previous

findings that grass is less effective than tree canopy for

LST cooling (Myint et al. 2013), likely because trees

with deeper roots have more consistent access to water

and thereby maintain more cooling capacity. Our

finding of a small positive nighttime parcel vegetation-

LST relationship contrasts with previous results from

Phoenix conducted at much larger (90 m pixels) scales

(Buyantuyev and Wu 2010; Myint et al. 2013), which

showed negative relationships between vegetation and

LST during both the day and night. Also in contrast to

regional UHI studies in this hot semi-arid environment

(Myint et al. 2015), parcel scale built land covers were

negatively related to nighttime LST. These reversals

of daytime patterns at night suggests that at the very

local scale, vegetation traps heat and building roofs

more rapidly lose heat at night. Resolving these scale

differences are an important research need. The

negative relationship between albedo and nighttime

LST and a smaller cooling effect of albedo throughout

the day is consistent with an explanation that higher

albedo surfaces have reduced energy storage and are

therefore cooler early in the night. For parcel-scale

land surface cooling, our results support both the use

of vegetation and high albedo (e.g. white roofing)

building materials (Georgescu et al. 2014). Because of

generally stronger land cover—LST relationships

during the day, peak temperatures may be more easily

managed than nighttime minimum temperatures

through landscape modification.

Notably, the effectiveness of vegetation (measured

either as NDVI or vegetated area) on moderating

temperatures varied substantially across neighbor-

hoods. Although prior work has shown a cooling

capacity for vegetation, it is generally believed that

this capacity is regulated primarily by the area of

vegetation (e.g. Jenerette et al. 2011; Li et al. 2011).

Our findings suggest that, in addition to the area of

vegetation, other factors influence the cooling capacity

of vegetation, which we quantified as slope of LST-

NDVI relationship within a neighborhood. We showed

that vegetation cooling effectiveness at the parcel

scale was correlated with expected bare surface

temperature, which is consistent with prior neighbor-

hood analyses examining patterns across seasons

(Jenerette et al. 2011; Zhou et al. 2014). These

findings suggest increased transpiration rates associ-

ated with hotter environments may lead to enhanced

cooling. However, the effectiveness of vegetation may

also be regulated by other factors we did not examine,

including irrigation (Jenerette et al. 2011), landscape

configuration (Connors et al. 2013; Zheng et al. 2014;

Zhou et al. 2014), and plant species characteristics

(Lundholm et al. 2010; McCarthy et al. 2011).

Strategies for reducing LST through increased plant-

ing should be targeted toward areas with the highest

temperatures because in these locations mitigation is

likely to be more effective than planting in areas with

lower LST.

Connecting environment with heat vulnerability

Daytime LST at neighborhood and parcel scales were

correlated with residents’ perceptions of the heat-

related risk factors and heat-related symptoms of

illness. Residents recognized regional variation in

temperature and were similarly aware of important

drivers of local LST including tree and road cover area

in their surroundings. Such consistencies between

perceptions and environment were previously sug-

gested by comparisons with modeled air temperature

data (Ruddell et al. 2012), although we present the first

data-based comparison of perception-environment link-

ages for LST urban microclimates. The consistency

between perceptions of factors associated with heat-

related health risks and observed patterns of these

drivers suggest there is value in consulting residents

about their views of effective heat mitigation strategies.

Critical for understanding residents’ heat vulnera-

bility, we showed that both parcel and neighborhood

daytime LSTs were correlated with self-reported

symptoms of heat-related illnesses. Symptoms are

markers of specific heat-health effects that provide

more information about the broader health impacts of

heat than can be gleaned from retrospective analysis of

mortality and morbidity records. The incidence of self-

reported heat illness symptoms in our sample greatly

exceeded the frequencies of deaths and hospitaliza-

tions attributed to heat in the Phoenix region (Petitti

et al. 2015).

Heat-related illnesses are associated with a suite of

individual, social, and environmental factors that are

themselves strongly interrelated (Reid et al. 2009;

Hondula et al. 2012; Harlan et al. 2013; Petitti et al.

2015). The causal mechanisms leading to heat ill-

nesses and deaths are not fully understood, although

research is making progress in explaining linkages

between spatial variations in living conditions and
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individual risks. For example, poverty is associated

with chronic health problems that are exacerbated by

heat (Balbus and Malina 2009), reduced coping

capacities that include access to air conditioning (Reid

et al. 2009), and elevated risks from working in higher

temperature conditions (Petitti et al. 2013).

At present the correlations between LST and heat

symptoms do not imply direct causation of heat illness

but our study clearly shows that daytime LST can be

one spatial indicator of heat risk. This was borne out in

our analysis showing positive relationships between

reported heat symptoms and daytime parcel and

neighborhood LST, as well as a much stronger positive

relationship between daytime parcel LST and symp-

toms of heat illness in the subsample of residents

without consistent access to air conditioning (the most

vulnerable subpopulation) compared to the entire

population. Perhaps surprisingly, no similar correla-

tions were observed between heat stress and nighttime

LST in this setting.

Comparisons between LST and survey respon-

dents’ lived experiences were consistent with several

of the few existing neighborhood scale studies,

including Harlan et al. (2013) analysis of Phoenix,

which showed an association between spatial vari-

ability in daytime LST and heat-related deaths. The

present study also examined, but did not find, a

relationship in this setting between mean parcel

nighttime LST in mid-summer and the likelihood that

survey respondents reported experiences with symp-

toms of heat illness. Our finding differs from a coarser-

scale (1 km LST data) study in Paris, which found

nighttime (minimum) LST was significantly associ-

ated with elderly heat deaths but there was no

relationship between deaths and daytime (maximum)

LST (Laaidi et al. 2012). More comparative research

on spatial and temporal variability in surface temper-

atures and heat-related health outcomes in urban areas

is needed.

Resolving the influence of daytime and nighttime

temperature variations on health impacts at appropri-

ate spatial and temporal scales is important for

identifying effective landscape interventions that

reduce health vulnerability. Yet a limitation of all

temperature-related health studies, including our own,

is the inability to make direct mechanistic links

between the temperature metric, the time, and the site

of where a heat-related health incident occurred. Some

of the symptoms reported in our study undoubtedly

occurred outside the home and neighborhood. Future

work directed to individual microclimate monitoring

(Kuras et al. 2015) will greatly improve the ability to

make such temporal and spatial linkages.

Looking towards more heat resilient cities

Our findings highlight the potential value for micro-

scale landscape interventions to reduce the heat

exposure risk and vulnerability of urban residents.

To meet current and future challenges of reducing

urban heat vulnerability, cities are using four main

strategies to manage heat risks: trees and vegetation,

green roofs, cool roofs, and cool pavement (United

States Environmental Protection Agency 2008).

Georgescu et al. (2014) concluded from their model

of the regional climate in Phoenix that more cool

roofing materials would have a greater impact than

more vegetation on decreasing regional air tempera-

tures. However, for reducing health risks associated

with higher LST, mitigating daytime LST in residen-

tial areas may be more effective than lowering

nighttime air temperature in hot climates like Phoenix.

At microscales, increasing greening in pedestrian

pathways and outdoor play spaces may be especially

useful (Vanos 2015). In comparing the relative cooling

effectiveness of vegetation and albedo, our findings

support increasing urban greening, especially by

planting trees around homes with a large fraction of

human-built land surfaces. Because the cooling

effectiveness of increasing albedo was observed

primarily at night, this strategy may not be as valuable

for reducing heat-related illnesses. However, as trees

in hot arid cities require irrigation, balancing the

cooling benefits with water use is an essential

sustainability challenge (Gober et al. 2010; Jenerette

et al. 2011; Pataki et al. 2011). Increasing albedo does

not have an associated water consumption trade-off

and could more readily be implemented anywhere.

Reconciling the effectiveness of alternate mitiga-

tion strategies is an important challenge for reducing

urban vulnerability to climate changes (Liang and

Weng 2008; Georgescu et al. 2014). Current global

demographic trends projecting 2.5 billion more urban

residents by 2050, a 64 % increase from current

distributions (United Nations Department of Eco-

nomic and Social Affairs Population Division 2014),

will place more people’s health at risk from extreme

heat due to combinations of global warming
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associated with greenhouse gas emissions and regional

warming associated with UHIs (Intergovernmental

Panel on Climate Change 2014). Interdisciplinary

approaches such as this one, which geographically

overlay data describing high resolution environmental

and human variation at the scale of individual homes,

provide a powerful lens for understanding and design-

ing the coupled natural and human systems that

contribute to reducing heat vulnerability.
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