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Abstract

Context The relative importance of habitat fragmen-

tation versus loss on species richness has been much

debated. However, recent findings that fragmentation

effects are relatively weak may be an artifact of using

human-classified vegetation rather than adopting a

species-eye view to measure landscape structure.

Objectives We present the first example of a species-

centered approach for examining fragmentation

effects on ecological communities. We tested

hypotheses relating to the relative influence of habitat

amount, configuration, and focal patch size on south-

west Oregon bird communities.

Methods We used boosted regression trees based on

unclassified Landsat TM to create ‘stacked’ species

distribution models (S-SDMs) for a large pool of avian

species and nested subset of habitat specialists. We

tested the relative importance of S-SDM-derived

habitat amount, patch number, mean patch size, and

focal patch size in explaining species richness. We

compared this approach to metrics based on generic

land-cover classifications.

Results Species-centered models had greater statis-

tical support than land-cover models. In species-

centered models, species richness increased as a

function of focal patch size and decreased with patch

number, supporting the hypothesis of negative effects

of fragmentation per se. Land-cover based models

indicated inconsistent support for habitat amount but a

positive effect of fragmentation.

Conclusion The species-centered approach identi-

fied habitat configuration relationships obscured by

land-cover based approaches. While positive land-

cover based fragmentation effects were consistent

with recent synthesis work, the species-centered

approach consistently revealed strong negative effects

of fragmentation matching traditional theoretical

expectations. S-SDMs may offer promise for gener-

alizing ecological theory to real species distributions.
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Introduction

In addition to the well known effects of local site

characteristics on diversity (MacArthur and

MacArthur 1961; Tews et al. 2004), the recent decades

of research in landscape ecology and metacommunity

ecology have made clear the additional importance of

landscape and regional processes in determining local

richness (Ricklefs 1987; Leibold et al. 2004; Harrison

and Cornell 2008). As anthropogenic disturbance to

natural ecosystems continues to alter both the extent

and spatial pattern of habitats (Barnosky et al. 2012;

Betts et al. 2017), disentangling the effects of land-

scape-level habitat composition and configuration on

species richness has become a primary focus in

ecology research and conservation planning (Whit-

taker et al. 2001; Ricklefs 2008; Tscharntke et al.

2012). The roles of habitat amount and fragmentation

have been intensively studied, with the goal of

informing on-the-ground biodiversity conservation

(Fischer and Lindenmayer 2006; Newbold et al. 2016).

Despite extensive focus, consensus has not been

reached on the relative importance of habitat amount

versus fragmentation or the scales at which they are

most influential to species richness (Prugh et al. 2008;

Thornton et al. 2011; Fahrig 2013, 2017; Hanski 2015;

Fletcher et al. 2018). Fahrig’s (2013) ‘habitat amount

hypothesis’ argues that community structure can be

explained by a ‘sample area effect’ whereby local

species richness increases with the amount of area

sampled in a landscape regardless of its configuration.

Thus, species responses often ascribed to configura-

tion would in actuality be primarily driven by

composition (Fahrig 2013). Additionally, the ‘regional

species pool’ hypothesis posits that regional scale

habitat availability determines which species can

disperse to a site, influencing richness over and above

filtering by local conditions (Tscharntke et al. 2012).

According to these concepts, higher landscape-level

habitat amount alone should indicate a larger potential

species pool, and hence a greater potential for multiple

colonization events and higher local diversity (Leibold

et al. 2004).

Alternatively, theory and empirical evidence sug-

gest the spatial configuration of habitat can influence

species occurrence, abundance, and richness beyond

the effects of habitat amount (Andren 1994; Haddad

et al. 2015; Hanski 2015; Pfeifer et al. 2017). Size,

pattern, and landscape context of individual habitat

patches may further mediate local richness through

independent and interactive effects on metapopulation

and metacommunity dynamics (Moilanen and Hanski

1998; Leibold et al. 2004). For example, amount of

available habitat surrounding a patch and its proximity

to other patches may affect species diversity via the

interactions between within-patch dispersal and

extinction processes (Hanski et al. 2013) and interac-

tions among patch-level communities (Leibold et al.

2004). This may be particularly true in landscapes

with little remaining habitat and where configuration

or species traits may contribute to low functional

connectivity (Betts et al. 2015).

The established paradigm for defining ‘habitat’ in

fragmentation research has included a strong dichot-

omy between habitat and matrix, following from

conceptual roots in island biogeography theory

(MacArthur andWilson 1967; Fahrig 2013). Typically

‘habitat’ and ‘matrix’ (or non-habitat) are researcher-

defined on the basis of classified vegetation or land-

cover type, particularly when attempting to define

‘habitat’ for multiple species simultaneously (Driscoll

et al. 2013; Fahrig 2013; Betts et al. 2014). However,

classified land-cover may be an ineffective proxy for

‘habitat’ (Cushman et al. 2008), potentially leading to

inconsistent results among studies and across taxa

(Thornton et al. 2011). In reality, ‘habitat’ or ‘matrix’

can contain unique gradients of individual species

responses to environmental conditions (Cushman et al.

2010), potentially producing error in simplified habitat

amount and fragmentation metrics. While a patch/ma-

trix simplification may be a necessary one for deriving

fragmentation metrics, the method of delineating

patches in a way that captures a species’ true ‘habitat’

may be key to accurately predicting species or

community responses.

The land-cover based approach to delineating

‘habitat’ has constrained investigation of habitat

amount/fragmentation effects on richness to groups

of species thought to share a strong affinity with a

particular cover type (e.g., ‘mature forest’) (Fahrig

2013) or in systems where boundaries are clearly

delineated (e.g., ocean-island mosaics; Leibold et al.
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2004). However, this simplification likely limits the

ability to test mechanisms that drive diversity (Bel-

maker and Jetz 2012). For instance, rare or more

specialized species likely do not occupy all ‘forest’

surrounding a focal patch, so the total population

available to serve as a pool of propagules is a small

subset of that estimated using cover types. Similarly, it

is unlikely that patch boundaries for all members of a

community are congruent (even within a single taxon);

it is well-known that bird species partition habitat at

fine scales (Holmes and Sherry 1988; Valente and

Betts 2018). Therefore, studies incorrectly defining

habitat for multiple species in a community risk Type

II error when it comes to uncovering primary drivers

of community structure.

We suggest that these problems may be addressed

by using a ‘species-centered approach’, which reflects

realities that (1) ‘habitat’ is a species-specific concept

and (2) in terrestrial systems, habitat rarely occurs as

islands, but is characterized by gradients in suitability

(Comfort et al. 2016). Building on the ‘continuum

model’ (Fischer and Lindenmayer 2006), a species-

centered approach uses ‘habitat’ defined on a species-

by-species basis (i.e., species distribution models) to

address questions about the role of habitat loss and

fragmentation on species distributions (Betts et al.

2007, 2014). Such an approach may be more realistic

in that it is well-aligned with Gleasonian ecological

theory of individualistic distribution of organisms in

relationship to their environment (Gleason 1936;

Cushman et al. 2010). This concept has been bolstered

by studies showing better predictive accuracy of

spatial patterns by continuum models in distributions

of tree (Evans and Cushman 2009) and bird species

(Shirley et al. 2013).

In a recent empirical test, individual bird species

distributions were more consistently predicted by

habitat amount metrics derived using a species-

centered approach compared with classified vegeta-

tion-based metrics (Betts et al. 2014). If tractable,

adopting a species-centered approach in studies of

landscape pattern could aid in the mechanistic under-

standing of the drivers of species richness, to the

benefit of conservation efforts. However, this

approach remains unexplored—perhaps due to the

technical and conceptual challenges associated with

quantifying ‘habitat’ for multiple species with dis-

parate habitat associations (Didham et al. 2012; Fahrig

2013).

Here, we demonstrate a novel methodology that

attempts to overcome these challenges, and examines

whether the method for defining ‘habitat’ may influ-

ence the outcome of a fragmentation study. We used a

species-centered approach to test the relative impor-

tance of habitat composition and configuration on bird

species richness using metrics derived from ‘stacked’

species distribution models (S-SDMs) based on

unclassified Landsat TM land-cover data (Figs. 1, 2).

We considered the potential effects of landscape

habitat amount, as well as mean size of patches in the

landscape (hereafter ‘mean patch size’), mean number

of patches in the landscape (hereafter ‘patch number’),

and focal patch size on richness. Whether or not it is a

primary driver of diversity in a particular landscape,

habitat amount has a clear positive association with

species occurrence (Fahrig 2013; Betts et al. 2017).

Mean patch size has been hypothesized to influence

local extinction dynamics, with small patches being

more prone to stochastic vacancy (Hanski 1998).

Patch number, another fragmentation metric, may

influence species dispersal among patches; although

patches are necessarily smaller for a given habitat

amount, they may serve as stepping stones, thus

positively influencing species richness (Saura et al.

2014; Fahrig 2017). This assumes that most species

are capable of crossing non-habitat gaps, and if they

cannot, we expect patch number to negatively influ-

ence richness. Finally, focal patch size reflects the

hypotheses from metacommunity theory that large

patches should have lower rates of local extinction

(Leibold et al. 2004), have greater potential for

conspecific and heterospecific information use

(Fletcher 2009; Schmidt et al. 2015), and be less

prone to stochastic disturbance effects (Elkin and

Possingham 2008). Focal patch size therefore repre-

sents a core mechanism of metapopulation dynamics

(i.e., the incidence function model [Hanski 1998])—

particularly if patch size is considered in the context of

its surrounding landscape (i.e., a ‘‘focal patch’’

approach [Hadley et al. 2014]).

We examined habitat amount and fragmentation

effects for a pool of 48 locally common bird species in

a heterogeneous temperate vegetation complex of oak-

and mixed conifer/hardwood -dominated cover types

in the Rogue Basin of southwest Oregon. To compare

how relationships might differ for habitat specialists,

we additionally examined a nested subset of 25 bird

species that are highly associated with oak forest
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during the breeding season (Altman and Stephens

2012).

We considered the following broad habitat amount

versus fragmentation hypotheses: (1) the landscape

composition hypothesis (Fahrig 2003), in which

landscape-level habitat availability mediates environ-

mental filtering via dispersal effects; (2) the landscape

fragmentation hypothesis (Villard et al. 1999)

whereby species richness declines linearly with

increased fragmentation after controlling for

Fig. 1 Process for calculation of species-centered landscape

habitat amount metric: (a) species occurrence data from an

observational study was modeled as a function of predictors

including (b) Landsat TM land-cover data and (c) elevation, as
well as climate. The resulting SDMs were used to interpolate

probability of species occurrence (which we interpreted as a

measure of ‘habitat amount’) across all pixels in the landscape

for each species; within this landscape subset (d), high

probabilities of occurrence for lazuli bunting are red, and low

probabilities are blue. Multiple SDMs for individual species

were ‘stacked’, or summed (e), for a prediction of total habitat

amount across the entire species pool at each pixel within a

landscape (f). Finally, a moving window analysis was applied to

calculate the mean of all pixels within a given radius as an index

of community-level habitat amount at a given scale, e.g. a 150 m

radius (g) or a 10,000 m radius (h). For g and h, highest summed

mean values are white, and lowest values are black. Bird species

pictured are included in the taxa examined in this study but are

arbitrary with respect to this hypothetical illustration. (Color

figure online)
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remaining habitat in the surrounding landscape; and

lastly, (3) the fragmentation threshold hypothesis

(Andren 1994; Fahrig 1998; Flather and Bevers

2002) where the effects of landscape habitat amount

and fragmentation interact, leading to a loss of species

richness under a certain threshold of patch size and

isolation.

Finally, to test whether previously reported weak

effects of patch size on species abundance and

richness could be partly attributable to inaccurate

delineation of ‘habitat’, we compared the performance

of our species-centered approach to the commonly

used method of using a generic land-cover based

approach for habitat amount and patch metrics. We

hypothesized that land-cover based metrics would not

be effective in detecting these relationships.

Methods

Study area

The Rogue Basin is part of the Klamath Mountains

ecoregion and the California Floristic Province biodi-

versity hotspot (Myers et al. 2000), and contains the

cities of Grants Pass (42.4389�N, 123.3283�W),

Ashland (42.1914�N, 122.7008�W), and Cave Junc-

tion (42.1667�N, 123.6469�W) (Supplementary

Fig. 2 Process for

calculation of species-

centered patch size metrics:

a Continuous SDMs (see

Fig. 1a–d) were converted

to presence-absence maps

for each of the study species.

b For each species,

contiguous pixels in the

presence-absence maps

were clumped to create

distinct patches of ‘habitat’

and log size of each patch

was calculated; various

shades in these maps

represent individual patches.

c At each survey point

(black dot) in the evaluation

dataset, the focal patch size,

mean patch size, and patch

number were calculated

across each of the two

species groups. Bird species

and respective maps

pictured are from top to

bottom: Lazuli Bunting,

Lesser Goldfinch, Hermit

Warbler. (Color

figure online)
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Fig. A1). The Rogue Basin is composed of five

watersheds that drain to the Pacific Ocean, and is

characterized by complex topography, with elevation

ranging from sea level to approximately 2300 m.

Configuration of diverse vegetation types including

prairies, riparian systems, shrub fields, and coniferous

and deciduous forest results in spatial heterogeneity

throughout the region (Franklin and Dyrness 1988;

Sawyer 2006). Vegetation composition varies with

elevation, aspect, soils, and disturbance history. His-

torically the primary disturbance in the Rogue Basin

was fire, and then, more recently fire exclusion. At the

stand scale, 8-year fire return intervals have been

documented prior to disruption in those processes in

the late 1800 s (Metlen et al. 2018). The Rogue Basin

is composed of a diversity of land owners and

associated land use and management practices, with

logging the most notable disturbance type (Franklin

and Dyrness 1988). The climate isMediterranean with

cool, wet winters, and hot, dry summers (Myers et al.

2000). Mean monthly precipitation ranges from

5.85 mm (July) to 849 mm (December), and mean

monthly temperatures from - 4.41 �C (December)

and 33.29 �C (July) (PRISM Climate Group).

Stacked species distribution model development

We developed a technique that uses a species-centered

approach to quantify ‘habitat’ for an entire community

(Fig. 1). We first developed species distribution

models (SDMs) for each species using an independent

training dataset (see ‘‘SDMs’’ below). The resulting

SDMs were used to interpolate probability of occur-

rence across all pixels in the landscape for each

species; for each species we interpreted this as a

measure of ‘habitat amount’ at each pixel. Multiple

SDMs for individual species were ‘stacked’, or

summed, for a prediction of total species pool-level

habitat amount each pixel within the landscape (see

‘‘Model ‘stacking’’’; Fig. 1). Finally, we used

S-SDMs to calculate metrics of habitat amount and

configuration across all species (see ‘‘Species-cen-

tered landscape habitat amount’’ and ‘‘Species-cen-

tered patch metrics’’; Fig. 2) and tested hypotheses

using an independent evaluation dataset.

SDM training dataset

We trained SDMs using bird occurrence data from

2107 point count surveys collected from 2000 to 2011

in the Rogue Basin (‘‘training dataset’’; Alexander

et al. 2004). We established survey points along

gradients of elevation and vegetation and spaced

points a minimum of 150 m apart along each transect

to limit double-counting of individual birds (Ralph

et al. 1993). We surveyed birds using 5-min counts

that were conducted within 4 h of sunrise between mid

May and early July to coincide with hours of peak

forest bird activity during the breeding season

(Stephens et al. 2010). Surveyors recorded all birds

detected by sight or sound, and estimated the bird’s

distance from the observer to the nearest meter.

Flyover and individuals detected[ 50 m from the

point count location were excluded from the analysis.

As number of visits per point count location varied

both within and across years, we randomly selected

data from a single visit to each point count location for

use in SDM training.

SDM evaluation and hypothesis testing dataset

We collected an independent bird occurrence dataset

in 2011 (‘‘evaluation dataset’’) to (1) assess the

predictive ability of SDMs and (2) estimate observed

species richness for hypothesis testing. We used aerial

photography, landowner data, and land-cover data

from the Gap Analysis Program (US Geological

Survey 2011) across the study area to create polygons

of oak or mixed oak/conifer/hardwood-dominated

vegetation types that were both (1) publicly accessible

and (2) large enough to contain up to twelve point

count survey locations spaced 250 m apart. We placed

632 point count locations on the vertices of randomly

placed 250 m grids in ESRI (2011) Spatial Analyst

across each polygon (Supplementary Fig. A1). Sur-

veyors visited each point count location once, using

survey methods identical to the training dataset

(Stephens et al. 2010).

SDM predictor variables

We included land-cover, elevation, and climate as

SDM predictors to represent conditions important to

forest bird distributions. We used unclassified Landsat

Thematic Mapper (TM) imagery with a 30 m2 pixel
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resolution to obtain continuous land-cover variables

for each survey year and for each point within the

model training dataset (USGS 1982; see Supplemental

Material for details regarding Landsat TM image pre-

processing). Following Shirley et al. (2013) we

calculated the means and standard deviation of TM

reflectance values at radii of 150, 500, 1000, and

2000 m at each pixel using a moving window analysis

in ESRI Spatial Analyst (ESRI 2011) for all non-

thermal infrared Landsat TM bands (i.e., 1, 2, 3, 4, 5,

and 7), resulting in 48 land-cover variables.

Climate predictors consisted of monthly 30-year

mean minimum and mean maximum precipitation

(July and December, respectively); mean minimum

and mean maximum temperature (December and July,

respectively); mean precipitation, mean minimum and

mean maximum temperature for June (corresponding

to mid-avian breeding season for the Rogue Basin);

and elevation. We obtained all climate variables from

interpolated 800 m grids derived from years 1981 to

2010 (PRISM Climate Group 2004) which we resam-

pled to 30 m to match the resolution of Landsat data.

We obtained elevation from a 30-m digital elevation

model (http://www.oregon.gov/DAS/CIO/GEO).

SDM training and evaluation

Using the model training dataset and environmental

predictors, we developed SDMs for study species

using boosted regression tree (BRT) models (Fried-

man et al. 2000; Friedman 2001). BRTs add a

‘‘boosting’’ method to a traditional regression tree

methodology to improve model accuracy; beginning

with a single regression tree, new trees are added

iteratively in a forward, stepwise fashion that mini-

mizes loss of predictive performance (Elith et al.

2008). BRTs model both non-linear relationships and

interactions among predictors, and can be used with a

variety of response distribution types. We developed

BRTs for the 48 most commonly occurring bird

species in the model training dataset (i.e., those

species detected at C 1% of survey locations), includ-

ing 25 oak-associated species.

We fit BRTs in the package ‘dismo’ (Hijmans et al.

2017) in program R (R Development Core Team

2008), with additional source code from Elith et al.

(2008). For initial runs, we used a ‘learning rate’ (lr) of

0.01, ‘tree complexity’ (tc) of 5, and ‘bag fraction’ of

0.5, as suggested in Elith et al. (2008) and validated for

use in forest bird distribution models (Shirley et al.

2013). For each species, we adjusted lr adjusted to

optimize the number of trees (nt) produced (with a

goal of at least 1000 trees), and adjusted tc in tandem

with lr for optimization of nt (Elith et al. 2008). We

evaluated prediction success of each species’ SDM

with (1) Area Under the Receiver Operating Charac-

teristic Curve (AUC) scores and standard errors for

within-model tenfold cross validation and (2) AUC

scores for model prediction to the evaluation dataset,

using the R package ‘pROC’ (Robin et al. 2011). All

species’ models performed sufficiently well to be

retained in further steps (see Supplemental Material

for details, Table A2).

SDM ‘stacking’

Using the packages ‘raster’ (Hijmans 2016) and

‘dismo’ in R, we used final BRTs to create 30 m2

pixel resolution maps of predicted probability of

occurrence (POC) for the entire study area for each of

the 48 species (Fig. 1A–D). For both the full pool of

48 species and the subset of 25 oak-associated species

(Supplementary Table A2), we stacked POC maps for

all species in each group to create a summary map in

which each pixel’s value was the sum of POCs for all

species at that pixel (Fig. 1E), resulting in two

separate S-SDMs for the study area. Thus, the value

of each pixel represents an estimate of total ‘habitat

amount’ across the entire species pool, and the final

map represents an estimate of community-level habi-

tat amount across the study area. Although use of

summed POCs versus summed threshold values (i.e.,

presence/absence) in S-SDMs is a matter of some

debate (Wilson et al. 2005; Dubuis et al. 2011;

Pellissier et al. 2013), we chose the more conservative

approach of using summed POCs to avoid overesti-

mation of species richness (Calabrese et al. 2014).

Species-centered landscape habitat amount

We calculated landscape habitat amount from

S-SDMs as the mean habitat amount at a 10,000 m

radius around each point count location in the

evaluation dataset for each species group (Fig. 1G).

We chose this distance as an outside range for habitat

use and breeding/natal dispersal distances for passer-

ine birds (Paradis et al. 1998; Bowman 2003; Betts

et al. 2007), and as it was least correlated with an
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estimate of local-scale habitat amount (see Supple-

mental Material for details).

Our approach required that we split habitat gradi-

ents into dichotomous categories for our patch metrics

(see ‘‘Species-centered patch metrics’’ below),

whereas our habitat amount metric is continuous.

Unfortunately, to date, we know of no methods to

quantify patches that do not require strict definitions of

boundaries. To ensure that use of a continuous habitat

amount metric did not give spurious results, we

conducted a sensitivity analysis in which we trans-

formed our continuous species-centered measure of

habitat amount into a dichotomous one. We reclassi-

fied the SDMs for each species to ‘habitat’ or ‘non-

habitat’ based on the same unique cutpoints that were

calculated to derive patch metrics (see ‘‘Species-

centered patch metrics’’ below). We then summed all

reclassified SDMs to generate a prediction of the total

‘habitat amount’ at each pixel across the study area,

and calculated the mean value at 10,000 m as the

dichotomous landscape habitat amount metric. The

relative influence of patch and landscape variables did

not differ substantively in this sensitivity analysis

(Supplementary Table A8).

Species-centered patch metrics

We calculated species-centered patch metrics for both

species groups as follows. First, we converted all

species’ probabilistic SDM maps to presence/absence

maps, using an objective a posteriori probability

cutpoint to determine the presence threshold uniquely

for each species (Fig. 2A). We calculated cutpoints

using the ‘‘coords’’ function with the ‘‘youden’’

method (or Youden’s J statistic) in the R package

‘pROC’. The Youden method maximizes the sum of

the sensitivity (the ability of the model to detect true

presences) and the specificity (the ability of the model

to detect true absences) of the Receiver Operator

Characteristic Curve. This is a preferable threshold

method for SDMs compared to use of a pre-selected

fixed cutpoint (e.g., 0.5) in terms of reducing both the

false positive rate and the false negative rate of species

presence and absence predictions (Liu et al. 2005).

For each species, we clustered contiguous ‘pres-

ence’ pixels into discrete patches using the ‘‘clump’’

function in the R package ‘raster’, where all adjacent

‘‘habitat’’ pixels within all eight directions were

considered part of the same patch (Fig. 2B). The

minimum gap size between patches for all species was

a single pixel’s distance of 30 m. Given that the gap-

crossing tolerance is not known for all study species in

our focal habitats, it was not possible to apply a

species-specific minimum gap size to each species’

patch delineation. We then calculated the mean log

focal patch size, mean log landscape patch size, and

mean number of patches in the landscape at every

survey point (Fig. 2C).

Generic land-cover based habitat amount

and patch metrics

We reclassed all classified vegetation types from Gap

Analysis Program (GAP; USGS 2011) land-cover data

layers as (1) ‘forest’ and ‘non-forest’ cover and (2)

‘oak’ and ‘non-oak’ cover. We then used these two

new classifications to calculate ‘forest habitat amount’

and ‘oak habitat amount’, corresponding to the full

pool and oak-associated subset of species respectively,

at the local (150 m) and landscape (10,000 m) scales.

For generic land-cover-based patch metrics, we

used our clumping method to identify all patches

within ‘forest/non-forest’ and ‘oak/non-oak’ layers,

and from this calculated our fragmentation metrics.

Due to the high connectivity of forest cover, the

resulting landscape structure was dominated by sev-

eral large patches; this issue is likely to be common in

forest-dominated landscapes.

Species richness as a function of habitat amount

and patch metrics

To test the relative effects of habitat amount and patch

metrics on bird species richness, we applied the

following model-selection strategy for each species

group and for both the species-centered and land-

cover based method. First, to test whether habitat

amount may be the sole driver of richness, wemodeled

species richness as a function of landscape habitat

amount for each species group and habitat metric

method (Model 1; Supplementary Tables A6, A7). We

then tested for the independent effects of each

configuration metric in a separate model (focal patch

size [Model 2], mean patch size [Model 3], patch

number [Model 4]; Supplementary Tables A6, A7);

each metric’s model also contained habitat amount

and the interaction between them (e.g., rich-

ness * habitat amount * focal patch size). This
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approach allowed us to control for the effect of habitat

amount and test for non-linear effects of each metric.

If 95% confidence intervals for either the configura-

tion variable or its interaction did not bound zero, we

retained these for inclusion in the top global models.

We examined the AIC (Akaike’s Information

Criterion) of each of the preliminary models versus

the top models, and between species-centered and

land-cover based models, to test which was more

parsimonious (Burnham and Anderson 2002). We

calculated the DAIC (difference between the model

with the lowest AIC and all other models), and

considered models within 2 DAIC from the top model

to be equally well supported, models within 6 DAIC to

have potential merit, and models approximately C 10

DAIC to be poorly supported (Symonds and Moussalli

2011).

We used simultaneous autoregressive (SAR) spatial

error models in the package ‘spdep’ (Bivand et al.

2011; Bivand and Piras 2015) in R to account for

variation in species richness resulting from the influ-

ence of spatial autocorrelation which may result from

both biotic and abiotic processes (Legendre 1993).

SAR models account for spatial structure using an

additional term based on a user-defined ‘spatial

weights’ matrix. Spatial error models are most appro-

priate when predictor variables do not fully explain

spatial autocorrelation, and have been recommended

for species distribution data over other SAR types

(Kissling and Carl 2008). We used correlograms and

Moran’s I in the package ‘ncf’ (Bjornstad 2016) in R to

test for spatial autocorrelation and found significant

effects up to 10,000 m. We ran final SAR models with

a spatial weights matrix based on a 10,000 m neigh-

borhood to remove these effects.

We standardized all model predictor terms to a

mean of 0 and a standard deviation of 1, allowing us to

directly compare the regression coefficients as ‘effect

sizes’ of all terms. Use of standardized coefficients to

compare effect sizes has been identified as a least-

biased option for comparing the relative importance of

predictors in regression analysis when using collinear

habitat variables (Smith et al. 2009).

To assess the level of multicollinearity in our top

models (i.e., the amount of extra variance likely in

model regression estimates due to correlation among

predictors), we calculated Pearson r correlations, as

well as variance inflation factor (VIF) scores in the R

package ‘fmsb’ (Nakazawa 2017). A VIF score

indicates the multiplicative factor by which the

estimated variance of a model term is likely inflated

given the other terms in the model. VIF\ 10 for a

term is generally taken to be an acceptable threshold

for model inclusion; however, it may not always be

appropriate to reject variables that are collinear,

depending on the goals of the analysis and the other

relationships between covariates such as suppressor

effects (O’brien 2007; Smith et al. 2009). We found

low to moderate correlation (Supplementary

Table A4) and multicollinearity (Supplementary

Table A5) in the species-centered metrics for top

models. A number of the land-cover based metrics

were highly correlated (Supplementary Table A4) and

multicollinearity within the top land-cover models

was high (Supplementary Table A5).

Many studies of landscape-scale habitat amount use

a local habitat amount term to control for the effects of

local site characteristics on the response of interest

(e.g. Betts et al. 2007). To ensure that important effects

of local habitat amount were not unaccounted for, we

conducted an additional sensitivity analysis in which

we added a term for local habitat amount (150 m) to

the top models for each species group and for both the

species-centered and land-cover based models. Local

habitat amount was calculated using the same methods

employed for landscape habitat amount (Fig. 1G). The

relative influence of patch and landscape variables did

not differ substantively in this sensitivity analysis

(Supplementary Table A9).

Results

Species-centered models versus generic land-

cover-based models

Species-centered models appeared to be better sup-

ported overall than land-cover models, according to

AIC ranks (Table 1). For the full species pool, the

species-centered top model had marginally more

support than the land-cover model (DAIC = 3). The

oak-associated species-centered model had substan-

tially more support than the land-cover model

(DAIC = 35).
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Species-centered models

We found consistent support for the landscape frag-

mentation hypothesis as an explanation for bird

community richness when using species-centered

models. Top models for both species groups contained

focal patch size and mean patch number; the model for

the richness of the full species group also contained the

statistical interaction between mean patch number and

habitat amount (Table 1), however the CI included

zero and thus did not fully support the fragmentation

threshold hypothesis (Table 1). Additionally, the top

model for the full species pool was\DAIC 2 from the

best preliminary model, indicating that these model

sets were essentially tied (Supplementary Table A6).

Focal patch size was an important positive predictor

for both oak and full species groups, and was the only

predictor in the top model for oak species with a

confidence interval that did not include zero (Table 1).

The effect of focal patch size tended to be stronger for

oak species richness than for the full species group

(Table 1). The top model for the full species group

also contained a negative coefficient for patch number

(Table 1), indicating that the effects of focal patch size

scaled up to the whole surrounding landscapes. For

oak species however, the CI for patch number bounded

zero when it was included with focal patch size in the

top model (Table 1). The direction of effects was

consistent with our hypotheses that species richness

would be positively associated with habitat amount

and focal patch size.

Habitat amount had a weakly positive relationship

with richness in top models for both groups (Table 1),

although CIs bounded zero. According to preliminary

models, there was more support for habitat amount as

a predictor of oak species richness than for the full

species pool (Supplementary Table A6). However,

using the species-centered method, standardized effect

sizes for configuration metrics tended to be greater

overall than for landscape composition (Supplemen-

tary Table A6). Mean patch size did not emerge as an

important predictor for either species group, but this

may have been due to a relatively high correlation with

landscape habitat amount (Supplementary Table A4).

Generic land-cover-based models

In land-cover based models, we found support for both

the fragmentation threshold hypothesis (full species

group) and landscape fragmentation hypothesis (oak

species). Both top models contained habitat amount

and patch number as well as their interaction, and the

oak species model also included mean patch size. The

top model for the full species group was[ 6 DAIC

Table 1 Top SAR models of species richness for two bird species groups (full pool of species, oak-associated specialists) as a

function of landscape composition and configuration metrics using both a species-centered approach and a land-cover based approach

Method Species group Metric Standardized

coefficient (SE)

CI AIC

Species-centered Full pool Landscape habitat amount 0.082 (0.28) - 0.471, 0.634 2753.4

Focal patch size 0.372 (0.13) 0.126, 0.618

Patch number - 0.472 (0.18) - 0.822, - 0.122

Patch number 9 landscape habitat amount 0.261 (0.14) - 0.018, 0.541

Oak-associated Landscape habitat amount 0.008 (0.18) - 0.348, 0.365 2494.3

Focal patch size 0.671 (0.10) 0.474, 0.868

Patch number - 0.208 (0.14) - 0.484, 0.067

Land-cover based Full pool Landscape habitat amount 1.175 (0.50) 0.186, 2.165 2756.4

Patch number 1.847 (0.50) 0.862, 2.831

Patch number 9 landscape habitat amount 0.255 (0.10) 0.059, 0.451

Oak-associated Landscape habitat amount - 0.880 (0.32) - 1.502, - 0.257 2529.7

Mean patch size 1.529 (0.58) 0.387, 2.671

Patch number 0.350 (0.40) - 0.427, 1.127

Patch number 9 landscape habitat amount - 0.165 (0.11) - 0.379, 0.050

Bold font for model results indicates that the 95% CI did not contain zero
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from the next best preliminary model (Table 1;

Supplementary Table A7). The top oak species model

was\ 2 DAIC from the next best model, indicating

that these model sets were essentially tied (Table 1;

Supplementary Table A7).

In contrast to species-centered models, CIs for

habitat amount (i.e., forest/oak amount) did not

include zero for both species groups, and effect sizes

were considerably larger, albeit with high SEs of the

coefficients (Table 1); this indicated relatively greater

importance of habitat amount when we used land-

cover based metrics. However, the direction of habitat

amount effects was opposite between the two species

groups (positive for full species, negative for oak

species; Table 1).

Similar to species-centered models, CIs for patch

number excluded zero for the full species group and

included zero for oak species; in contrast, the direction

of effects was positive for both groups (Table 1). The

model for the full species group contained a positive

interaction between patch number and habitat

(Table 1). However, CIs for the land-cover based

patch number x habitat amount interaction did not

include zero; this indicated greater support for the

landscape threshold hypothesis than in the species-

centered approach. The land-cover based model for

oak-associated species was the only top model to

include a term for mean patch size (Table 1); although

the SE was high, CIs did not include zero and effects

were positive.

Discussion

To our knowledge, this is the first study to apply a

species-centered approach to quantifying the relative

effects of habitat loss and fragmentation on species

richness. Using this approach, we did not find

evidence for the landscape composition hypothesis

(Fahrig 2003), suggesting that community-level land-

scape scale dispersal or ‘‘mass effects’’ may not be the

dominant drivers of community structure in the avian

community we examined. Rather, the species-cen-

tered approach indicated that bird richness was

primarily influenced by habitat configuration (i.e., a

positive effect of focal patch size and a negative effect

of number of patches in the landscape), even after

statistically controlling for habitat amount. Hence, our

results are inconsistent with the habitat amount

hypothesis (Fahrig 2013), but consistent with the

landscape fragmentation hypothesis (Villard et al.

1999). Evidence from preliminary models also indi-

cated potential support for the fragmentation threshold

hypothesis (Andren 1994; Fahrig 1998; Flather and

Bevers 2002), specifically that the negative effect of

number of patches might be mitigated by increasing

habitat in the landscape.

Species-centered models supported the idea that

while habitat loss is of clear importance to biodiversity

(Pimm and Raven 2000; Betts et al. 2017), the

configuration of remaining habitat may have the

potential to exacerbate the negative impacts of that

loss and thus should not be ignored (Villard and

Metzger 2014). This approach consistently revealed

strong negative effects of fragmentation matching

traditional theoretical expectations (Hanski 2015). A

number of other studies have found positive or no

effects of fragmentation per se on species richness and

occupancy (Prugh et al. 2008; Fahrig 2017; De

Camargo et al. 2018), and a relatively high importance

of habitat amount compared to fragmentation (Smith

et al. 2009). However to our knowledge, previous

efforts have relied solely on human-derived land-

cover classifications (e.g., forest/non-forest), similar

to our land-cover models which found relatively more

positive fragmentation effects and a greater relative

importance of habitat amount.

Indeed, our land-cover models led to different

conclusions, in which landscape habitat amount (i.e.,

forest/oak amount) was more explanatory of species

richness, and fragmentation had primarily positive but

variable effects. Increasing number of patches in the

landscape (increased fragmentation) had a positive

relationship with species richness; in contrast, increas-

ing mean patch size (reduced fragmentation) had a

positive effect. These models performed better than

expected at detecting fragmentation relationships,

although the multicollinearity with habitat amount,

also an important predictor, made the relationships

difficult to discern. This was particularly true for the

oak species group, for which the top model contained a

negative effect of landscape habitat amount. This may

indicate that mean patch size as defined by land-cover

was not truly reflective of a unique ecological process,

but was simply another measure of habitat amount in

our landscapes.

In our system, the positive effect of fragmentation

(i.e., increasing number of patches) observed with the
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land-cover approach would likely be driven by the fact

that despite ‘forest cover’ being subdivided into more

patches, suitable habitat for many species was not

actually more fragmented. The ‘cross-habitat spillover

hypothesis’ predicts that the richer species pool in

more heterogeneous landscapes may contribute to

higher potential local richness, beyond that which may

be supported based solely on focal patch size or quality

(Tscharntke et al. 2012). This may result in the amount

and connectivity of habitat actually increasing for

edge-associated species, non-forest species, or species

that benefit from habitat complexity. Conversely, the

negative association of patch number with richness in

the species-centered models may reflect that after

controlling for habitat amount, reduced functional

connectivity among increasingly subdivided habitat

patches may have a detrimental affect on local

colonization and extinction balance.

We found evidence for greater sensitivity to focal

patch size in oak-associated birds than for the bird

community as a whole in species-centered models,

supporting previous findings that specialists may be

particularly sensitive to habitat fragmentation (Devic-

tor et al. 2008; Valente and Betts 2018). This finding

has potential conservation importance given the

declining status of oak habitats and their associated

bird populations in the region (Altman and Stephens

2012). This variation in the fragmentation-richness

relationship highlights the potential for landscape

sensitivity to depend on the life history or ecological

traits of the species being examined (Valente and Betts

2018).

Criticisms have been leveled at the use of focal

patch in fragmentation studies (Fahrig et al. 2019)

stemming from the notion that patch size can be an

ambiguous configuration metric unless the amount of

habitat within the landscape is taken into account

(Fahrig 2003). Importantly, we found focal patch

effects even after statistically controlling for habitat

amount and number of patches in the landscape in both

of the species-centered top models. We argue that

focal patch size captures biologically relevant habitat

configuration attributes perhaps not effectively quan-

tified through landscape-scale variables.

We expect that a focal-patch approach most closely

reflects the processes which are thought to influence

individual species and subsequently species pool-level

responses to habitat fragmentation (Leibold et al.

2004; Hanski 2015). Metapopulation theory (Hanski

1998) posits that patch occupancy is driven by

colonization and extinction dynamics at the scale of

individual patches, where the risk of stochastic local

extinctions is lower in large patches due to greater

local population sizes. In addition, locations that are

well connected to other populations are more likely to

be colonized following local extinctions. Sites within

large focal patches are inherently better connected

than sites in small focal patches. If birds show

reluctance to cross gaps (Hadley et al. 2014) or utilize

social information (Fletcher 2009; Schmidt et al.

2015), vacant territories within well-connected single

patches should be more likely to be colonized than

vacant territories contained within more isolated

patches. Area of connected habitat surrounding the

sampling site (as quantified by the focal patch

approach) is unlikely to be adequately captured by

mean patch size, as this metric can be identical in

landscapes with very different configurations; this is a

well-known problem for any metric based on

averages.

The frequency with which species persist as

metapopulations in extinction/colonization balance,

as opposed to persisting as a result of stable large

populations, is still debated among ecologists (Hanski

1998, 2015). However, it is important to note that

many species are highly specific in their habitat

requirements, and are rare (Preston 1948) and thus

patchily distributed. It is therefore reasonable to

expect that the spatial dynamics described above,

which are driven by patch size and landscape context,

should be of critical importance to driving population

dynamics of species, playing a key role in structuring

communities. In other words, due to the naturally

patchy distribution of most species, the necessity for a

species-centered approach should be the rule rather

than the exception in terms of understanding drivers of

community structure and assembly.

Poorer fit, in terms of AIC, higher covariance

betweenmodel terms, and larger effect size SEs within

land-cover based models relative to species-centered

models appear to be the result of the noise associated

with attempting to create a single classification of

‘habitat’ for a large, diverse species pool. Particularly

for oak-associated species, poorer relative perfor-

mance and a negative effect of forest amount may

indicate that the land-cover data were not sensitive

enough to accurately delineate the region’s heteroge-

neous oak vegetation at a scale relevant to breeding

123

1930 Landscape Ecol (2019) 34:1919–1935



birds. One additional drawback of land-cover metrics

was the high correlation between them, a perennial

issue in fragmentation research (Smith et al. 2009).

We retained collinear variables in our top models, as

we could not fully reject the possibility of suppressor

or additive effects, and because each of our metrics

represented unique ecological processes (Smith et al.

2009). Although CIs for the parameter estimates in the

full species model did not include zero, large SEs

indicated a high amount of variance in the relation-

ships between richness and both habitat amount and

patch number. In contrast, species-centered metrics

were much less correlated and thus easier to interpret

when included in the same model. This may highlight

a potential problem with creating ‘one-size-fits-all’

generic land-cover classifications for such large and

diverse species pools, and a possible benefit of a

species-centered approach.

A potential weakness of using our S-SDM based

method over a traditional generic approach is the

perceived complexity of the results; it is challenging to

visualize the sum of individual species-centered

patches versus a map of ‘habitat’ patches based on

land-cover classifications. However, to determine

which locations might warrant conservation prioriti-

zation it is possible to map species richness ‘‘hotspots’’

that constitute locations where large patches exist

across multiple bird species, by simply mapping the

sum of patch sizes for all individual species of interest

at each pixel in a landscape (Fig. 3).

Overall, this study may be viewed as a consilience

between the polarized views in the fragmentation

Fig. 3 Patch size across the

study area for all species

combined (a) and oak-

associated species (b). For
both species groups, we

stacked all individual

species’ patch size maps

(Fig. 2b) and calculated the

log (sum ? 1) of patch sizes

across the community at

each pixel. For both species

groups, darkest areas are

those where patch sizes tend

to be highest across the

greatest number of species

in the bird community;

lightest areas are where the

fewest and smallest size of

patches occurred across the

community. For the oak-

associated species (b), areas
in white are where no

patches occurred for any of

these species. (Color

figure online)
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versus habitat loss debate (Fletcher et al. 2018). In our

system, quantifying ‘fragmentation’ for large biotic

communities in forest mosaics led to very different

conclusions depending on the method for defining

those metrics; this observation may be reflected in

some of the lack of consensus on the importance of

fragmentation and direction of its effects across

studies. The current reliance on land-cover ‘habitat’

classification does not preclude metapopulation-style

processes exerting strong influences on biological

communities, but could obscure them. We suggest the

discrepancies between our species-centered and land-

cover models are important. If the observed relation-

ships were indeed a function of the way ‘habitat’ is

defined, we argue that our carefully validated species-

centered models may have provided insight into

fragmentation relationships that could be present in

other taxa and systems, but have previously gone un-

detected.

Implications for future research

Current difficulties in uncovering generalities in

responses of biodiversity to landscape changes, and

the resulting uncertainty, may be at least partially a

result of challenges in quantifying ‘habitat’ simulta-

neously across pools of species. Our novel technique,

which reflects metacommunity processes without

ignoring the complexity inherent in natural systems,

could be used for any group of species where sufficient

data exists for species distribution modeling. As SDM

techniques using remote sensing data continue to

improve (Kennedy et al. 2007) and global-scale

empirical datasets become more common (Pfeifer

et al. 2014), the opportunities for testing landscape

sensitivity of species and communities will only

increase. Given high variability in life history traits

and differential responses to habitat perturbation, the

use of more sensitive tools that account for species-

specific complexity may allow currently obscured

relationships to be clarified, to the benefit of conser-

vation efforts.

As this is the first application, to our knowledge, of

a species-centered approach for assessing the relative

importance of habitat amount and configuration met-

rics for biological communities, replication across

other taxa and systems will be required to refine the

technique and compare against previous research

using land-cover based metrics. It is possible that in

other landscapes, with very different land use histories

and subsequently different grain size of species’

habitat distributions, relationships between landscape

pattern and richness will not be consistent with our

findings; however only additional research will deter-

mine to what extent generalities may exist. With time,

further development, and broader application, we

suggest that the species-centered approach has the

potential to reveal more accurate predictions about

species and community sensitivity to alterations in

landscape structure.
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