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Traditional approaches to studying human–environment interactions often ignore individual-level information,
do not account for complexities, or fail to integrate cross-scale or cross-discipline data and methods, thus, in
many situations, resulting in a great loss in predictive or explanatory power. This article reports on the devel-
opment, implementation, validation, and results of an agent-based spatial model that addresses such issues.
Using data fromWolong Nature Reserve for giant pandas (China), the model simulates the impact of the growing
rural population on the forests and panda habitat. The households in Wolong follow a traditional rural lifestyle, in
which fuelwood consumption has been shown to cause panda habitat degradation. By tracking the life history of
individual persons and the dynamics of households, this model equips household agents with ‘‘knowledge’’ about
themselves, other agents, and the environment and allows individual agents to interact with each other and the
environment through their activities in accordance with a set of artificial-intelligence rules. The households and
environment coevolve over time and space, resulting in macroscopic human and habitat dynamics. The results
from the model may have value for understanding the roles of socioeconomic and demographic factors, for
identifying particular areas of special concern, and for conservation policy making. In addition to the specific
results of the study, the general approach described here may provide researchers with a useful general framework
to capture complex human–environment interactions, to incorporate individual-level information, and to help
integrate multidisciplinary research efforts, theories, data, and methods across varying spatial and temporal
scales. Key Words: Agent-based modeling, complexity theory, multidisciplinary and multiscale integration, household

socioeconomics and demographics, giant panda conservation.

C
omplex human–environment interactions have
been increasingly attracting the attention of
researchers with different backgrounds and re-

search purposes. On the one hand, characterizing the
environment and the complex role that human actions
play within it is challenging. This is partially due to the
inherent complexity of the processes. The accumulated
impact of individual decisions made by dozens, hun-
dreds, or millions of people is the immediate cause of
human-induced environmental change. On the other
hand, these individual actions are shaped by the par-
ticular social, political, economic, and environmental
frameworks within which they occur. These frameworks
change through time as conditions change. Furthermore,
the imprint of these activities varies throughout space
and across different spatial scales.

The science of complexity has provided key theoret-
ical contributions and techniques for environmental
modelers wrestling with these challenges (Flake 1998). It
is concerned with the manner in which fundamental
processes can lead to emergent phenomena or behaviors

in complex adaptive systems (CAS), focusing on many
kinds of complexities such as hierarchical structures, feed-
back, self-organization, scaling, and time lags (Malanson
1999). Levin et al. (1997) provide a broad overview
of approaches to considering complexity in ecosystem
modeling. They describe several advantages:

� Incorporation of substantial local and individual
characteristics

� Recognition of the stochastic nature of complex
systems

� Explicit characterization of the impact activities at
one scale have on patterns at another

However, the challenge is also a technical or
implementational one. How can researchers integrate
data and models to deal with these complex processes? A
variety of approaches have been adopted; a general
overview of these was recently published in this journal
(Parker et al. 2003) and is only briefly reviewed here.
Geographers and other human–environment mod-
elers often turn to Geographic Information Systems
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(GIS) to assist in data management and modeling of
spatially explicit variables. GIS is a powerful tool to
capture, store, manipulate, and analyze spatial data, and
it has been extensively used in studying human–envi-
ronment interactions. The data models employed by
common GIS are inherently static, however; they do
not handle time well, nor do they capture functions or
dynamic processes effectively (Peuquet 1999). Envi-
ronmental modelers usually resort to externally
implemented methods to handle advanced modeling
problems (although interesting integrated implementa-
tions exist, e.g., the PCRaster platform discussed by
Wesseling et al. 1996). These methods include multi-
variate spatial models (e.g., Seto and Kaufmann 2003),
Markov chain analysis (e.g., Brown, Pijanowski, and Duh
2000; López et al. 2001), and cellular automata (e.g.,
Batty, Xie, and Sun 1994; Li and Yeh 2002; Malanson
2002). In particular, cellular automata (CA) models
have been shown to be powerful in modeling many ec-
ological processes because, as a bottom-up approach,
they have a better capacity than GIS overlay or map
algebra functionality to capture and represent local in-
teractions that give rise to global complex patterns (e.g.,
Li and Reynolds 1997; Clarke and Gaydos 1998). CA
models, however, face challenges in simulating human
decision making and capturing feedback elegantly
(Parker et al. 2003).

It may be worth highlighting a few of these diverse
approaches employed by scientists with similar research
problems and data to those of the present study. These
studies, like our own, seek to model relationships be-
tween social factors and landscape change. Pan et al.
(2004) report on work regressing landscape pattern
metrics with data collected in farmstead surveys in Ec-
uador. Geographic factors, including extent and spatial
scale, are shown to play an important role in model re-
sults. Walsh et al. (1999) demonstrate the effect of
spatial resolution on multiple-regression models relating
population per unit of cultivated land to six independent
social and physical variables for a region in Thailand.
Both studies integrated social data collected with surveys
with land-cover and other spatial data. The same Ec-
uadorian study site employed by Pan et al. (2004) was
also subject to a cellular-automata-based model in an-
other study (Messina and Walsh 2001). In that model,
land-cover change over time is modeled using patterns
observed in data collected in five time intervals over
three decades. Rules identifying the probability of cell
state change based on its neighbors are developed,
leading to predictive models of land-cover dynamics.
While the goals and data of these different studies are
similar, very different methods are employed. The first

two use multivariate techniques to identify overall re-
lationships between land cover and human processes.
The third employs a bottom-up approach in which in-
dividual cells change state over time according to
probabilities associated with their properties and those of
neighboring cells.

Agent-based modeling (similar to individual-based
modeling in many ecological studies) is another bottom-
up methodology that has been specifically employed to
deal with complexity, especially when coupled with GIS.
The research reported in this article utilizes this ap-
proach. Agent-based modeling (ABM) predicts or ex-
plains emergent higher-level phenomena by tracking the
actions of multiple low-level ‘‘agents’’ that constitute,
or at least impact, the system behaviors. Agents usually
have some degree of self-awareness, intelligence, au-
tonomous behaviors, and knowledge of the environment
and other agents as well; they can adjust their own ac-
tions in response to environmental changes (Lim et al.
2002; Parker et al. 2003). The concepts underlying ABM
are similar to those of the object-oriented programming
(OOP) paradigm in computer science, and ABM models
frequently employ object-oriented programming lan-
guages like C11 and Java.

Unlike procedural programming, for which data and
operations on the data are separated, object-oriented
programming groups operations and data (or behavior
and state) into modular units called objects and lets the
user combine objects into a structured network and form
a useful program (Larkin and Wilson 1999). Figure 1(a)
is an illustration of an object with operations (called
methods) and data bound together. The strengths of
OOP lie in its modularity, software reusability, and its
separation between interface and implementation.
Modularity reduces programming complexity by dividing
code into relatively separated ‘‘parts’’ or modules, each
with different functional focuses. Software reusability
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Figure 1. (a) An object in object-oriented programming with data
and operations (methods) combined and (b) an interface and im-
plementation of object-oriented programming (NeXT Software,
Inc. 1992).
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means that one piece of code, when defined and tested,
can be reused as many times as possible. The separation
between interface and implementation hides technical
details inside the system surface, such as the parts in a
clock and how these parts interact with each other
(Figure 1(b); NeXT Software, Inc. 1992). The ‘‘imple-
mentation’’ feature (technical details) makes the system
work well. A user-friendly interface running above this
provides simple data input, output, and display functions
so that other objects (or users) can call or use them.

A set of agent-based modeling tools with the above
OOP features is readily available for use, e.g., Swarm,
RePast, NetLogo, Ascape, and StarLogo.1 Swarm may be
one of the most powerful and comprehensive toolkits
(Najlis, Janssen, and Parker 2001). Swarm is a software
package for multiagent simulation of complex systems
publicly available under GNU licensing terms. Originally
developed at the Santa Fe Institute and now maintained
by the Swarm Development Group, Swarm decomposes
emergent phenomena at a certain level into attributes
and actions of collections (swarms) of concurrently in-
teracting agents at lower levels. Swarm allows for a
hierarchical structure for agent organization and
management, which means a higher-level agent in the
hierarchy can include and manipulate a number of
lower-level agents and their actions (Minar et al. 1996).

ABM alone does not address complexity (e.g., spatial
heterogeneity, structural hierarchy) well, however. A
growing number of efforts to integrate ABM with tradi-
tional approaches such as equation-based models and
GIS have been made in the environmental modeling
arena (e.g., Bian 1997; Berger 2001; Gimblett 2002; Jiang
and Gimblett 2002), but relatively few studies have been
implemented to examine the complex manner in which
the accumulation of individual decisions, as affected by
social/political factors and economic conditions, may af-
fect the biophysical environment across a range of spatial
and temporal scales. Here we address this critical topic
with the following specific objectives: (1) linking spatial
patterns and temporal processes by capturing complexity
(e.g., heterogeneity, nonlinearity, feedback, and time lag)
via ABM in a coupled human–environment system; (2)
constructing a framework to integrate data and/or
methods across disciplines, spatial/temporal scales, and
aggregation levels; and (3) providing an effective policy-
analysis tool for biodiversity conservation in relation
to low-level anthropogenic (e.g., household life history)
and environmental (e.g., spatially varying forest volume
and growth rate) characteristics and relationships.

This article is fundamentally about integration: the
integration of social and environmental drivers, the in-
tegration of diverse modeling techniques, the integration

of fundamental knowledge generation with the policy
implications of that knowledge, and the integration of
data about processes operating across a range of spatial
and temporal scales. It addresses these issues within an
explicitly geographical framework and takes advantage of
spatial tools that provide a practical modeling environ-
ment for conducting this complex analysis. We recognize
that the project’s technical architecture might divert
attention from the project’s specific purpose: to represent
relationships between giant panda habitat loss in the
Wolong Nature Reserve (China) and local household
dynamics as affected by the social, economic, and po-
litical context. For this reason, a variety of validation
efforts are employed to assess the fidelity of model results
and their sensitivity to input parameters.

Methods

Study Area

An excellent site to conduct research with the above
objectives is Wolong Nature Reserve in China (Figure 2)
for the following reasons: (1) it is recognized as a globally
significant biodiversity conservation site; (2) much is

Figure 2. The location and elevation (m) of Wolong Nature Re-
serve in China.

An et al.56



known about the biology and physical environment of
the giant panda; (3) human impact on panda habitat is
a serious problem in the reserve; and (4) the complexity
of the problem necessitates an integrated approach. We
discuss each of these points in turn in the following
paragraphs.

First, there is broad consensus that the Wolong Na-
ture Reserve is of global significance. Established in 1975
for conserving the endangered giant panda (Ailuropoda
melanoleuca), the reserve is within one of the twenty-five
global biodiversity hotspots (Myers et al. 2000). Over
2,200 animal/insect species and more than 4,000 plant
species (Wolong Administration 1987) cohabit with the
giant panda in a diverse biophysical environment occu-
pying approximately 2,000 km2. Species richness, an
important indicator of biodiversity, is directly linked to
availability of associated habitat types based on the utter
dependence of organisms on an appropriate environment
(Ehrlich and Wilson 1991), especially for contexts as-
sociated with island biogeography. A famous example is
the species–area relationship, i.e., S5 cAz, where S is
the number of species that occur in a region with area A,
and c and z are relevant constants (MacArthur and
Wilson 1967). Thus, protecting habitat is a necessary
step toward conserving any single type of organism. The
implications for Wolong are clear: conserving panda
habitat means that both the internationally renowned
and endangered giant panda and the less widely known
species that live within and comprise that habitat can be
protected.

Second, we have collected extensive socioeconomic
and environmental (e.g., remote-sensing) data about the
Wolong area through our intensive fieldwork from 1998–
2002. Extensive research efforts have been invested on
giant panda biology, ecology, and habitat studies, such as
the relationship between the giant panda and bamboo
forest, the canopy cover that serves the giant panda as
shelter, and the understory bamboo that serves as a
primary food source (e.g., Schaller et al. 1985; Liu,
Ouyang, Tan, et al. 1999).

Third, the rural human population in the reserve
threatens panda habitat. Although Wolong enjoys high
domestic standing as a ‘‘flagship’’ reserve in China with
considerable domestic and international financial and
technical support, the reserve also supports a substantial
human population that is growing rapidly, with an even
more rapid increase in the number of households (Liu,
Daily, et al. 2003). The population (approximately 4,400
local residents in 2000) is comprised of four ethnic
groups: Han, Tibetan, Qiang, and Hui, following a tra-
ditional rural lifestyle (Liu, Ouyang, Tan, et al. 1999; An
et al. 2001). In spite of the enormous time, energy, and

increasing difficulty involved in collecting fuelwood
(mostly due to the shrinking forest area and the ex-
tremely rugged mountainous terrain), the majority of
households in Wolong cut wood from the surrounding
forests to cook and heat their homes. Although elec-
tricity is available in the reserve,2 only a small proportion
of the households use electricity for cooking and heating;
the primary use of electricity is for lighting and electronic
appliances (An et al. 2001, 2002). Assuming that an
average household consumes 15 m3 of fuelwood per year
(An et al. 2001) and that an average hectare of beech
(Fagus), oak (Quercus), birch (Betula) and poplar (Pop-
ulus) forest contains 80 m3 of fuelwood (Yang and Li
1992), then a 90� 90 m pixel of mixed forest can
sustain one household’s fuelwood demand for about
four years.

Despite abundant economic incentives (e.g., a lower
agricultural tax) and policies (e.g., prohibiting some tree
species from being harvested) implemented by the re-
serve administration, the past two decades have still
witnessed a continued increase in annual fuelwood
consumption (from 4,000 m3 to 10,000 m3 over the past
two decades), contributing to a total reduction of over
20,000 ha of panda habitat (Liu, Ouyang, Taylor, et al.
1999). Degradation of forests comprising panda habitat
undoubtedly accounts for part of the documented de-
crease in the Wolong panda population in recent dec-
ades: from 145 individuals in 1974 (Schaller et al. 1985)
to 72 in 1986 (China’s Ministry of Forestry and World
Wildlife Fund 1989). This degradation may arise from
some combination of ineffective enforcement of existing
policies, the common-property nature of the forests, and
the difficulty in monitoring, given the rugged landscape
of the reserve. All these factors make biodiversity of the
Wolong Nature Reserve highly sensitive to human ac-
tivities and policy changes and threaten the long-term
viability of the ecosystem to support wild populations of
giant panda and other coexistent species.

Last, the complexity underlying various ecological,
socioeconomic, and demographic processes has necessi-
tated interdisciplinary research involving a range of
spatial and temporal scales. Piecemeal approaches fail to
account for many important factors; nonspatial ap-
proaches cannot characterize the critical role location
and relative position play for interactions between hu-
mans and the environment; evaluating habitat in single
time periods ignores the dynamic nature of the processes
that drive habitat destruction. Existing research efforts
to characterize the relationship between panda habitat,
fuelwood consumption, and human socioeconomic/
demographic factors (e.g., An et al. 2001, 2002, 2003;
Linderman et al. forthcoming) are inadequate because
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they account for too few aspects of Wolong’s human–
environment system.

For instance, the fuelwood model (An et al. 2001)
links the household-level fuelwood demand to house-
hold demographic and socioeconomic factors, but it is
basically aspatial and unable to link household fuelwood
demand to its impact on the landscape. The electricity-
demand model suffers from the same limitation in that it
links the probability of switching to electricity to a set
of socioeconomic, demographic, and geographic factors
(An et al. 2002), but cannot identify the impact of this
change to specific locations, or to the forests of Wolong.
In addition, household demographics are exogenous in
these models; no attempt to characterize the dynamic
nature of the household was made. An, Mertig, and Liu
(2003) develop a household formation model to address
this deficit. This model attempts to characterize the
movement of young adults from their parental homes to
establish their own households in the Wolong region.
However, it does not address the spatial location of
households whose demands for fuelwood and electricity
are determined as mentioned above. More importantly,
these models alone still cannot effectively address the
complexity in this coupled human–environment system:
nonlinear interactions, cross-scale (spatial and tempo-
ral) data, feedback, and time lags between different
subsystems. The model described in the subsequent
paragraphs is designed to overcome these limitations and
to accomplish the objectives discussed in the introduc-
tion. It is intended to be a comprehensive tool to (1)
employ a valid representation of the Wolong landscape
and incorporate its spatial heterogeneity; (2) incorporate
the demographic dynamics of households and individu-
als situated within this landscape; and (3) link fuelwood/
electricity demand to the changing characteristics of the
landscape and households as established in (1) and (2).

Conceptual Model

With an excellent study site and a wealth of data, we
have developed an Integrative Model for Simulating
Household and Ecosystem Dynamics (IMSHED). As in
many other studies (e.g., Deadman et al. 2001; Liu et al.
2003; Rindfuss et al. 2003; Walsh et al. 2003), house-
holds are chosen to be the fundamental unit for local
people’s decision making and behavior in relation to
consumption and production of local resources. The
conceptual framework is illustrated in Figure 3. The
model consists of three major components: household
development, fuelwood demand, and fuelwood growth
and harvesting. Each of these components is addressed
in turn within the remainder of this subsection.

First, the houses within the dashed box represent
households in Wolong at a particular point in time, while
the solid houses represent households in the same
landscape but at a later time. Household change during
this interval might involve one or more of many events:
households may increase or decrease in size, dissolve, or
relocate; new households may be initiated as individual
persons go through their life history, the details of which
are illustrated in the section ‘‘Demographic Submodel.’’
The formation of a new household, which depends upon
the actions of young adults who have reached mar-
riageable age, is explained by a set of psychosocial factors
using a structural equation modeling approach based
on our 220-household in-person interview data (An,
Mertig, and Liu 2003). The findings from this model and
our in-person interviews indicate that the intention to
leave the parental home and establish a new home (the
variable ‘‘leave-home intention’’ in Tables 2 and 3) is
determined or influenced by his/her sibling status
(whether he/she has siblings, and whether he/she is the
youngest son or daughter (Figure 5(b)), the availability
of land, and the behavior of parents and peers. This
intention is the major predictor of new household for-
mation for young adults after marriage.

Second, at each snapshot over time, the fuelwood
demand of a household may be modeled as a function of
household size, whether there is a senior person (601
years old) in the household, and the area of cropland
based on our extensive fieldwork and interview data (An
et al. 2001). Presence of seniors is positively correlated
with fuelwood demand because Wolong households
with seniors use more firewood for longer heating time
and higher home temperatures throughout the winter.
Cropland area is also positively correlated with fuelwood

TEMPORAL SCALE

Forest

Contextual Factors

SPATIAL SCALE Fuelwood Collection

Figure 3. The conceptual framework of IMSHED.
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demand because larger acreages are associated with hog
farming. These farms grow potatoes and corn, the bulk of
which are cooked in fuelwood stoves and fed to pigs. This
phenomenon may arise from a traditional belief that
cooked food makes pigs grow faster and healthier. The
pork or bacon thus obtained is consumed and often sold
to tourists and local restaurants for cash. This explains
why there is a link between cropland area (for corn and
potatoes) and fuelwood demand. The probability of
switching from fuelwood to electricity for each household
is predicted by a number of socioeconomic and demo-
graphic factors using a discrete choice logit model (An
et al. 2002), in which a household’s decision to switch to
electricity or continue to use fuelwood is regressed
against the age, gender, and education of the household
head, annual household income, electricity price, outage
frequency, voltage levels, and a few other factors.

Last, the forests on the landscape, given no human
interference, grow and die by themselves. The interac-
tions between humans and the environment are realized
through fuelwood collection, as shown by the two lower
vertical arrows in Figure 3. Harvesters from local
households, given a certain amount of fuelwood demand
derived from the model described above, travel to the
most convenient set of locations (pixels in a raster grid)
to cut fuelwood. Increasing distance for fuelwood col-
lection may, in turn, reduce local households’ fuelwood
demand and encourage the substitution of electricity.
Important physical and social factors (context factors in
Figure 3), including distance, elevation, policy decisions,
and law enforcement, exert impacts on many processes
such as demand for fuelwood and electricity.

Major Agents/Objects

Major agents/objects include individual persons,
households, pixels (square grid cells representing ho-
mogenous units of the landscape), and some manage-
ment agents helping us manage various objects or tasks
(e.g., a list containing many agents of the same type). We
only describe the major agents, starting from definitions
of the corresponding classes. A collection of manage-
ment agents handle mostly technical details in Swarm,
and are not further elaborated on here.

Person. This class includes attribute variables such as
personal ID, age, ID of the household that she/he be-
longs to, education level, gender, personal IDs of his/her
mother and father, and his/her marital status. Also, the
Person class has a few variables associated with child-
birth: birth plan (how many children this person would
have), birth interval (number of years between two con-

secutive children), marriage year (the year the person
gets married), birth year (the year the person gives birth
to a child), and first-child interval (the time between the
marriage and the birth of her first baby). We will discuss
the use of these variables in the section ‘‘Demographic
Submodel.’’

The actions (called methods in Java) include: give
birth, die, grow, marry, move out of a household, move
into a household, and cut fuelwood. Some other detailed
actions (e.g., set the value for an attribute variable) spe-
cific to Java-Swarm programming are not discussed here.

Household. This class includes attribute variables
such as household ID (consistent with that defined in
the Person class), x coordinate, y coordinate, cropland
area, household income, electricity price, outage level,
voltage level, location of the household (Wolong Town-
ship for 0 and Gengda Township for 1; this is consistent
with the dummy variable of location in the econometric
model of An et al. 2002), distance of fuelwood trans-
portation, and probability of switching from fuelwood to
electricity. All the variables needed for predicting elec-
tricity and fuelwood demand are defined here because
these demands are determined at the household level.

The actions in this class include formation of a new
household, dissolution of a current household (when the
number of people who belong to this household goes to
zero), or an increase or decrease in household size (i.e.,
number of people in a household). We assume that when
a new household is established, the area within 90 m (a
parameter) around it has to be deforested and becomes
nonhabitat for the pandas. This parameter is set in ac-
cordance with the fine spatial resolution that will be
discussed in the data section. As a general rule, the value
should be a multiple of the finest spatial resolution em-
ployed (90m; another resolution is reported on in this
study) unless only the pixel containing the household is
to be deforested.

Pixel. The Pixel class contains all the information
necessary for simulation of landscape changes. It con-
tains attribute variables such as the x coordinate, y co-
ordinate, elevation, slope, land-cover type, forest age,
and forest volume (for non-forest pixels, this volume is
automatically set to zero). Methods for the Pixel class
include land-cover change (primarily from forest to non-
forest), forest age increase, and volume growth (in forest
pixels with tree species). We assume that forest volume
reduction is primarily caused by fuelwood collection,
because other factors such as forest fires and timber cut-
ting are rare in the study region (M. Liu, personal
communication).
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Data Collection, Preparation, and Integration

The performance and application of any spatial model
depend substantially on the data available for parame-
terization, calibration, and validation. Our data fall into
the three categories of spatial environmental data, de-
mographic data, and socioeconomic data.

Spatial environmental data. We have assembled a
wealth of empirical data on both social and environ-
mental factors and have built a database in both Micro-
soft Access and GIS (ArcInfo). Because remote sensing
can provide views of the processes under study with ad-
equate spatial extent, information detail, and temporal
frequency (Herold, Goldstein, and Clarke 2003), we
have used two time steps of high-quality, remotely
sensed satellite images: Landsat TM (1997) and IKO-
NOS (2000). We have conducted a supervised classifi-
cation of the 1997 data based on 126 sample plots of
60� 60 m, and validated them using a reserved set
of sixty-three sample plots, resulting in an overall classi-
fication accuracy greater than 80 percent (shadow areas
were classified as unclassified). We also have developed a
digital elevation model of 30 � 30 m resolution, inter-
polated from one-hundred-meter-interval contour maps
using the topogrid interpolation method in Grid ArcInfo.
Based on a set of 313 Global Positioning System (GPS)
points measured throughout the reserve, the DEM has a
vertical accuracy of less than 50-m root mean square
error (RMSE) and a standard deviation of approximately
37 m (in some most rugged areas the difference could be
as large as 200 m).

Spatial coordinates of current household locations
were obtained with Global Positioning System (GPS)
measurement, and image analysis. The following steps
illustrate the manner in which household locations were
identified and linked with remotely sensed data and
information from household surveys: (1) In the summer
of 2001, we measured a total of fifty-nine households
using a Trimble GPS unit with real time differential
correction (Omnistar), for which positional accuracy was
estimated to be within 2–3 m. Four IKONOS satellite
images (with 1 m resolution) that cover most of the area
of Wolong with human settlements were also obtained.
(2) We printed out a set of IKONOS-derived maps with
spatial resolution chosen so that households and their
interrelationships were most easily identifiable. Using
these maps, we visited each household and collected the
demographic information described in the agents section
above and linked that information to their spatial loca-
tions. (3) Using the coordinates of the fifty-nine
households and fifty-five control points collected in the

summers of 1998–1999 (Linderman et al. 2004) as
control points, we georeferenced the four IKONOS im-
ages and recorded the coordinates of all the identifiable
households. For households not identifiable in the
IKONOS images, we used GPS to measure their coor-
dinates. (4) Using the names of household heads as
unique identifiers, we linked the demographic and so-
cioeconomic data with the locational data (coordinates)
on the IKONOS maps. Because nearly all Wolong
houses are surrounded by their apportioned land, and
land cannot be sold or traded in China (see the section
‘‘Demographic Submodel’’), we did not record home-
stead field boundaries but assumed they were located
immediately around the recorded house locations. For
details of these processes, see Liu, An, et al. (2003).

Choosing an appropriate spatial resolution is a key
challenge for this modeling effort. There is a trade-off
between fidelity of spatial representation (an overly
coarse cell resolution may mask some spatial variations)
and efficiency (halving the resolution quadruples the
amount of data and thus increases storage requirements
and model execution times). We identified two re-
solutions to employ: 90 m and 360 m. For submodels
requiring extensive human demographic factors
(population size, number of households), the coarser
(360 m) resolution was used. For submodels requiring or
characterizing landscape characteristics (e.g., forest
growth, distribution of panda habitats), the finer (90 m)
resolution was used. Both resolutions were generated by
resampling the 30 m raster DEM, slope, and Landsat
TM-derived land-cover data; the methodology is re-
ported by Linderman et al. (2004). Land-cover data
were collapsed to nonforest (0), deciduous forest (1),
conifer forest (2), and mixed forest (3). Processing took
place in Erdas Imagine and ESRI ArcGIS, after which
elevation, slope, and land-cover data were converted to
ASCII text format for input to the Java-Swarm IMSHED
model.

The fuelwood volume in each pixel is estimated ac-
cording to the dominant tree species in that class. Class
1 consists of beech (Fagus), oak (Quercus), birch (Bet-
ula), and poplar (Populus), and the volume range is 60 to
100 m3/ha, with ages ranging from fifty to one hundred
years old. Class 2 consists of fir (Abies), pine (Pinus), and
spruce (Picea), and the volume is from 200 to 400 m3/ha
with ages ranging from 40 to 110 years old. Class 3 could
be a mixture of any of these species and other woody
ground cover; we set its volume from 125 (the average of
lower bounds of Classes 1 and 2) to 250 m3/ha (the
average of upper bounds of Classes 1 and 2); and the age
is set to be from forty to ninety years (Yang and Li 1992;
Ouyang et al. unpublished data; Linderman et al. 2004).

An et al.60



Demographic data. Socioeconomic data were ob-
tained from a range of sources. Government data in-
cluded the 2000 Population Census data of Wolong
(Wolong Administration 2000), and the 1996 Wolong
Agricultural census data (Wolong Administration 1996).
Survey data were collected for approximately 1,000
households in Wolong, of which 220 were face-to-face
interviews. Survey information included household eco-
nomic status, social network (kinship relationship), and
attitudes toward such issues as fertility. All these indi-
vidual-based data, arranged by household, include per-
sonal ID, ID of the household that the person belongs to,
gender, age, kinship relation to the household head, and
other attributes of the ‘‘Person’’ and ‘‘Household’’ class-
es. These data cover all people in the reserve.

Each person (an object of Person class) keeps his/her
father and mother IDs as attributes. In case the person’s
father or mother is unknown, dead, or not in the reserve,
the value for the associated ID is set to zero. By doing
so, we keep the kinship relations clear, which makes
the simulations as realistic as possible. For instance, a
brother in the single male list cannot ‘‘marry’’ his sister in
the single female list by mistake because two people who
share the same mother ID, father ID, or household ID
are not allowed to ‘‘marry’’ each other.

These data can be employed to identify likelihoods for
important household state changes: they are used to derive
values for the parameters described in the following sec-
tion. For example, consider the probability of in- and out-
migration of young people from their parents’ homes. Fe-
males emigrate from Wolong (0.28 percent); females im-
migrate to Wolong through marriage (0.19 percent); males
emigrate fromWolong (0.043 percent); males immigrate to
Wolong through marriage (0.043 percent). Since female
in- and out-migration is relatively common, these param-
eters are employed in the demographic model. Parameters
like these may not lead to changes in the amount of panda
habitat over short time periods, but effects could be sub-
stantial at later times, and we examine their significance
later in the section ‘‘Complexity Exploration.’’

Socioeconomic data. The 1996 and 2000 demograph-
ic data sets identified in the previous section also contain
some useful socioeconomic information, such as the
cropland area for each household, which is very impor-
tant in determining household fuelwood demand (An
et al. 2001). However, primary socioeconomic data were
obtained from our interviews of the 220 households. The
primary data include current electricity prices, outage
frequencies, and voltage levels, which are used in com-
puting the probability to switch from fuelwood to elec-
tricity (see the section ‘‘Electricity demand’’). Other

questions in the same interview sessions have led to
very useful information about what factors affect young
adults’ decisions about leaving their parental homes and
establishing their own households after marriage. Those
rules (to be described later in the section ‘‘Immigration
and local movement through marriage’’; also see Figure
5) about where to live after marriage are mainly based on
these data.

Demographic Submodel

All individual-based data were entered into an Access
database and exported as text into IMSHED. The model
keeps track of the life history of individuals (objects of
Person class) as follows: persons may give birth or be
born, die, get married, and move into or out of a
household (subsequently, into or out of the reserve in
some cases) through marriage. Out-migration occurs
when local residents move out of the reserve, immigra-
tion occurs when people move into the reserve from
other places, and local movement occurs when local
residents move within the reserve (primarily through
marriage). Households are affected by these changes:
they increase or decrease in size, new households form,
and some existing households dissolve.

Death and out-migration. The death of each person
is simulated through a random process. The likelihood of
death for a person in a given year is in accordance with
his/her age—0.00745 for people aged 0–5, 0.0009 for
people aged 6–12, 0.00131 for people aged 13–15,
0.00196 for people aged 16–20, 0.00291 for people
aged 21–60, and 0.05354 for people older than 60 (An
et al. 2001). If a number drawn from a uniform distri-
bution is less than the mortality rate associated with the
person’s age, he/she dies (as person on the left in Figure
4), and his/her spouse (if he/she has one) changes her/his
marital status to ‘‘without spouse’’ while switching to the
single male (or female) group; otherwise he/she survives
the year.

Out-migration in Wolong is of two types: move-out
through education and move-out through marriage;3

the latter distinguishes between males and females. If a
person survives, the model checks his/her age. If the age
is between sixteen and twenty and the random number
generator creates a number smaller than the college at-
tendance rate for people in this age group (0.0192 for
each of the five years; see An et al. 2001), then he/
she goes to college and leaves the reserve (exits from
the simulation in IMSHED) permanently. Otherwise,
the person remains in the household for that year. The
rationale for doing so is that nearly all of Wolong young
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people who leave for the college find work in cities after
graduation and do not return to the rural life of
the reserve. For each single person above twenty-two (the
minimal age for marriage by law), he/she will move out of
the reserve (exit from simulation in IMSHED) if the
random number generator creates a number smaller than
male/female’s move-out through marriage probability
(0.043 percent, and 0.28 percent, respectively).

Immigration and local movement through mar-

riage. Immigration is restricted due to Wolong’s stand
as a nature reserve for panda conservation. The only le-
gal way for people outside the Reserve to move in and
obtain permanent residence licenses (Hukou) is through
marriages with local people. A very important decision
associated with both immigration and local movement is
to determine whether a newly married couple will initi-
ate a new household or not. This is important in IM-
SHED because the efficiency of fuelwood consumption
differs among households as household sizes change (Liu,
Daily, et al. 2003). The following situations are included
in IMSHED: (1) A local male brings an outside female
into Wolong through marriage, and the decision process
is illustrated in Figure 5(a). (2) A local female brings an
outside male into Wolong through marriage. The deci-
sion process is similar to that in (1). Based on the find-
ings of An, Mertig, and Liu (2003), the decision of
whether to initiate a new household for these two people
is: if (a) the female has no sibling, or (b) though she has
siblings, all of them are females, and she is the youngest
among them, then her husband and she will remain in

SP

MarryMarry

Marriage move-in

Marriage move-outCollege

New birth

Die

Time 1

Time 2

P-Parent
S-Sibling

H-Husband
W-Wife
C-Child

S S H W PS

P

S

W HH W H W P

Household 1 Household 2

Household 1 Household 2Household 3

H

Figure 4. An illustration of individual-based demographic simulation.
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her original household with a probability of 0.58, a pa-
rameter subject to change. Otherwise, they will initiate a
new household. (3) A local male marries a local female:
When two local singles get married, if the husband (a)
has no siblings, or (b) has only female siblings (sisters), or
(c) is the youngest among male siblings, then the couple
lives in the husband’s original household with a proba-
bility of 0.58; otherwise check the sibling status of the
wife. If she (a) has no siblings, or (b) she has only female
siblings (sisters) and is the youngest among them, then
the couple lives in the wife’s original household with a
probability of 0.58. Otherwise, the couple initiates a new
household.

Based on the age and marital status of a person, a
person is assigned to one of the four groups (lists in
Java): (1) young group (all unmarried males and females
less than twenty-two years old), (2) single male group
(all single males over twenty-two years old, including the
males whose spouses died), (3) single female group (all
single females over twenty-two years old, including the
females whose spouses died), and (4) married group (all
females and males who have spouses with them). For
example, if a male in the young group reaches twenty-
two, he will move to the single male group; at some time,
if he gets married, he will move to the married group.
However, if for some reason his spouse dies, he moves
back to single male group again and has the potential to
get remarried, but the chance of doing so decreases as his
age increases. The following equation is used to re-
present this relationship in accordance with our field
observations:

Rate of marriage at ageX ¼ 0:35=ðX� 30Þ0:4: ð1Þ

Childbirth. The event of childbirth only happens to
females in the married group. For easier explanation,
suppose that the woman under consideration is called M
(indicating mother). As mentioned in the introduction
of the Person class, each person has a birth plan that is
used to set the number of children he/she may have. As
indicated by Liu, Ouyang, Tan, et al. (1999), the number
of children for each couple is 2.5. We use a binomial
random variable Y to assign the number of children that
M would have (Figure 5(b)). Since most families do not
have more than five children (Wolong Administration
2000), we assume she would have 0, 1, 2, 3, 4, or 5
children with the probabilities of 0.03125, 0.15625,
0.3125, 0.3125, 0.15625, and 0.03125. The cumulative
probabilities are 0.03125, 0.1875, 0.5, 0.8125, 0.96875,
and 1, which are used to set probability intervals later.
This is based on the classic problem of flipping a coin n

(n5 5 here) times and observing the number of heads
above Y, where the probability of success (observing
heads up) is 0.5, and Y is a random variable that could
take values from 0, 1, . . ., to 5. From the binomial dis-
tribution, the average of Y is n� p5 5� 0.55 2.5
(number of children per mother). The probabilities are
computed by the following equation, where p is the
probability of ‘‘success.’’

Prob: ðY ¼ yÞ ¼
N

y

� �

� py � ð1� pÞðN�yÞ: ð2Þ

As an alternative childbearing model (overloading
in object-oriented programming), we simply randomly
choose a number between two integer bounds with equal
probability. For other parameters, we set their values
based on our field observations. Birth interval (age dif-
ference between two consecutive children) is randomly
chosen between 1 and 6 years because the observed
average birth interval is around 3.5 years. The first-child
interval (the time between marriage of a couple and
birth of their first child) is set to be 1 or 2 years with even
probabilities. All these parameters are subject to change
for different purposes, such as sensitivity or uncertainty
analysis and policy design and test. We employed this
model to simulate the childbearing for each female in
the married group as illustrated in Figure 5(b), where the
above parameters (e.g., birth plan, upper birth age, and
birth interval) all affect her childbirth decision.

Household dynamics. In accordance with all possible
events for each individual, a household may decrease or
increase in size, be initiated, or dissolve. When a new
household is initiated, it is randomly assigned a site that
is within a certain distance from its parental or original
household, subject to two topographical restrictions of
slope less than 37 degrees and elevation less than 2,610
m (He, Bearer, and Liu unpublished field data). This
distance is controlled by a parameter with the default of
800 m based on our field observations. The new house-
hold is assigned a portion of the land from its parental
household in proportion to its size rather than carved out
from untenured land, which is based on the current Chi-
nese land system. Farmers only have usufruct, and land
can neither be traded nor developed without government
permission because, based on China’s constitution, the
government and the collective organizations (quasi-
governments) hold title to all land. The household re-
sponsibility system implemented in the late 1970s or
early 1980s (the time for Wolong) assigned a certain
amount of land to each rural household based on a set of
criteria including household size and land quality, which
has endured almost unchanged in spite of shifts in
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household sociodemographic factors such as household
size. For this reason, new households founded by young
married couples are often located in the immediate vi-
cinity of one of the parental households. This fact ex-
plains why we did not map property boundaries for each
household and why we did not employ a model to sim-
ulate land use change.

Landscape Submodel

There are several landscape-oriented components of
the model; one is a forest growth model that is used
to determine fuelwood volume, two are concerned with
path identification and selecting forested pixels for har-
vest, and one is a conventional GIS/cartographic model
to identify panda habitat. Each will be discussed in turn.
In all cases, the basic unit is the pixel, with resolutions of
90 m and 360 m, depending on the requirements of the
specific model.

Forest growth. Due to data limitations, we only con-
sider forest growth using the simplified forest cover
classification scheme presented in the section ‘‘Data
Collection, Preparation, and Integration.’’ According to
Yang and Li (1992), the growth model for Class 1 is set
to be 0.6, 0.8, and 1.0 m3/ha/year if the forest is younger
than twenty years, between twenty and eighty years, and
older than eighty years. For Class 2, the rate is set to
2.0 m3/ha/year regardless of the age. For Class 3 (mixed of
Classes 1 and 2), the rate is set to 1.5. The maximal vol-
umes for these three classes are set to be 350, 400, and
300; growth rate is set to zero when the volume of a pixel
reaches its upper boundary.

Path finding. Finding the path to collect fuelwood is
one of the primary processes in landscape simulation.
Aside from the land apportioned to a household (usually
adjacent to the household), the vast amount of rural

land in China (including forests) is accessible to the
public unless otherwise specified or regulated. Although
Wolong has some habitat regulation policies, as men-
tioned in the section ‘‘Study Area,’’ their implementa-
tion was ineffective, and most forest could be regarded as
an open resource (later, we use a parameter ‘‘house buff-
er distance’’ to represent a fuelwood restriction policy;
see the section ‘‘Model Test’’). Therefore, we simply
consider the effects of topography and distance on the
selection of routes to forested pixels, which may be vis-
ited by multiple households. In Figure 6(a), the house-
hold in the lower right corner needs to decide where to
cut a certain amount of fuelwood, which has been de-
termined by a number of socioeconomic and demograph-
ic factors and the probability of switching to electricity.
Here we use a set of artificial intelligence rules in ac-
cordance with our in-site observations and interview
data, such as the rule of limited viewing scope to be il-
lustrated next.

To illustrate the function of the spatial fuelwood
model, we consider the decision process underlying
it (Figure 5(b)). (1) The fuelwood collector from the
household has a limited geographical scope (the rule of
limited viewing scope), so he/she only chooses among
the forest pixels within the dashed window of size 5� 5
(the window size is a parameter that may be adjusted
by the user; 5� 5 is only used for demonstration). (2)
Within this window, only four pixels have forests, and
the next step is to identify which pixel has the least cost
to reach. Starting from the forested pixel, the fuelwood
collector would deviate as little as possible from the di-
rect path to each household pixel. We assume that his/
her path-finding behavior is confined by the two
southeast–northwest lines parallel to an assumed line
cutting across the household and the pixel, where the
distance between these two lines is a parameter. (3)
Since he/she would not turn back while carrying a load
of fuelwood, we assume that he/she goes northwest and
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Figure 6. (a) An illustrative distribution of
households and forests and (b) the procedure
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tions).

An et al.64



does not go beyond the forest pixel; therefore, his/her
path is also confined by the two lines that are perpen-
dicular to the above two southeast–northwest lines.
Within the area set by these four lines, he/she chooses
the least-cost path. (4) Starting from the forest pixel, he/
she chooses the pixel that has a lower elevation (or the
one with the smallest elevation change if multiple pixels
have lower elevations) and goes northwest as indicated
by the arrow. For simplification, at some point if the
household pixel is within one pixel to his/her standing
pixel, he/she goes to the household directly. (5) He/she
continues in this manner until the household pixel is
reached.

Once the path is determined, its total length is cal-
culated. Then it is adjusted by the slope between adja-
cent pixels along the route. The result indicates the cost
of traversing the route between the home and a single
forested cell. The same procedure is conducted on the
remaining three forest pixels. Then, for that specific
year, the collector chooses the pixel with the least-cost
distance.

Fuelwood site selection. For each household, we
identified all of the forest pixels within a certain buffer
distance (3,600 m as default based on unpublished field
data from He, Bearer, and Liu) and put them on a list.
We then calculate the cost distance between each forest
pixel and the household using the method described
above. We then group all these forest pixels into three
categories of pixels that are 1,080 m, between 1,080 and
2,160 m, and over 2,160 m from the household, respec-
tively. These three categories are chosen because inter-
view data confirmed that 48.1 percent, 27.3 percent, and
24.6 percent, respectively, of the households collected
fuelwood at sites corresponding to the above distances
(He et al. [section II] unpublished field data). Therefore,
if the random number generator creates a number small-
er than 0.481, between 0.481 and 0.754, or greater than
0.754, the household will collect fuelwood in sites cor-
responding to the above distances.

We also apply artificial intelligence to the household
under consideration: once it selects a pixel to collect
fuelwood in a given year, it returns to the same pixel next
year as long as the forest is still available. Doing so
not only matches our field observations but also saves
computer memory and time in computing and running
the program, as fuel collection sites can be saved as an
attribute of the household. Once this pixel is deforested,
the household identifies a neighboring forested pixel.

The household ‘‘remembers’’ this distance (annually
updated based on the location of the forest pixel), which
affects its fuelwood demand by altering the household’s

perceived fuelwood collection proximity. Based on the
travel distance employed in the previous year, proximity
is set to be one of the three levels (short, moderate, and
distant), corresponding to less than X m, between X m
and 2.5X m, greater than 2.5X m, respectively (X5 800
m is the model default). Perceived proximity affects
electricity demand and therefore provides a feedback
effect. As fuelwood becomes harder to collect (sites
become more distant), fuelwood demand drops, and
households may substitute electricity for heating and
cooking. The impact of the feedback effect is tested by
varying the threshold X, a parameter called perceived

threshold distance later in this article.

Habitat determination. To identify habitat, we use
the criteria of Liu, Ouyang, Tan, et al. (1999): any pixel
with an elevation between 2,250 and 3,250 m, slope less
than 30 degrees, and containing canopy forest is viewed
as potential habitat. We combine two classes ‘‘highly
suitable habitat’’ and ‘‘suitable habitat’’ from Liu et al.
(2001) into one category, ‘‘habitat,’’ and exclude ‘‘mar-
ginally suitable habitat’’ (Liu et al. 2001) in our simula-
tion because we want to provide a conservative estimate
of panda habitat.

Socioeconomic Submodel

Potential fuelwood demand. Fuelwood consumption
is calculated on a household basis in IMSHED. Accord-
ing to An et al. (2001), the fuelwood demand from a
household can be modeled as a linear function of (1)
household size, (2) whether a household has a senior
person, and (3) area cultivated in corn and potato.
(These two crops are usually grown together, and both
are primarily used as fodder. This area is largely in pro-
portion [60–80 percent] to the total land area obtained
from the parental household.) The first two factors,
which are characterized in the demographic submodel,
are checked annually, while area under corn–potato cul-
tivation changes only if a new household is initiated from
the parental household, in which case land is partitioned
proportional to the sizes of the new household and the
resultant parental household.

Electricity demand. The fuelwood demand model
just described does not consider the probability of
switching from fuelwood to electricity and is, thus, in-
complete. This switch probability is determined by the
age, gender, and education of the household head,
household annual income, current electricity price, out-
age frequency level, voltage level, perceived distance of
fuelwood transportation, and location of the household
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under consideration (An et al. 2002). The following
equation quantifies this relationship:

Prob ðswitchjxi; zi; a; b; wÞ

¼ exp ½aþ bðx1i � x0i Þ þ wzi�=

½1þ exp ðaþ bðx1i � x0i Þ þ wziÞ�

¼ 1=½1þ exp ð � a� bðx1i � x0i Þ � wziÞ�:

ð3Þ

Vectors x1i and x0i represent the hypothetical and cur-
rent electricity conditions (price, outage levels, and
voltage levels), respectively, and b is the parameter
vector associated with x1i and x0i . Other nonelectricity
factors, such as age and geographic locations, are de-
scribed by the vector zi with an associated parameter
vector w. The coefficients (w) for the two dummy vari-
ables of low perceived distance and moderate perceived
distance are � 1.24 and � 0.34 (An et al. 2002), indi-
cating that as the fuelwood collection sites become
far enough to change the household’s current perceived
distance (see the section ‘‘Landscape Submodel’’), the
switch-to-electricity probability will rise and the demand
for fuelwood will accordingly decrease.

Reduced fuelwood demand. When electricity is avail-
able, the ultimate fuelwood demand is computed as the
fuelwood demand derived above times the probability
that the household does not switch to electricity, which
is 1 minus the probability of switching from fuelwood to
electricity as computed above.

Programming for Simulation

The model is programmed using Java-Swarm 2.1.1,
a collection of software libraries developed by Swarm
Development Group and briefly described in the Intro-
duction. Swarm (Java version; it also supports Objective-
C) provides many readily useable packages for Java
programmers. In addition, by resorting to a few readily
made application programming interfaces (API’s), IM-
SHED provides a user-friendly and graphical interface to
set parameters and run the program.

IMSHED also provides a batch mode without
graphical interfaces, where command-line arguments are
allowed from the Unix/Linux shell. The modeling envi-
ronment employs a command-line-based experiment
manager written in Perl (Perl is a high-level program-
ming language particularly well-suited for tasks involving
quick prototyping, system utilities, system management
tasks, World Wide Web programming, and so on; see
http://www.perl.com), which allows for efficient experi-
ments by sweeping varying combinations of parameters

designated in the Perl manager, leaving multiple runs
progress unattended, and writing simulation results to
designated directories.

Model Test

Model test, a crucial step after model calibration, is
subject to many theoretical and practical challenges.
Though models of any complex open system (e.g., agent-
based spatial models like ours) may not be truly verified
and validated (Overton 1977; Oreskes, Shrader-Frech-
ette, and Belitz 1994), we still follow the traditional
terms of model verification and validation. Both of these
involve fitting the model to data or theory, but verifi-
cation checks for the proper functioning of the
programming, while validation investigates the corre-
spondence between the software model and the con-
ceptual model (structural validation) and between
model outcomes and empirical data (empirical valida-
tion; see Manson 2001).

Model verification includes progressive debugging
(see the paragraph below) and uncertainty testing
(Table 1). Debugging is progressive in that model con-
struction and calibration run in parallel with debugging/
verification processes. We begin with a very simple
model, and then add and test new features or algorithms
progressively until we are confident in moving on.
Testing involves assessing output of a series of thirty runs
over a span of twenty years. This span is chosen because
it is long enough for teenagers at model initiation (1996)
to grow and experience nearly all the major life-history
events such as marriage and household development,
but short enough so that some assumptions or parame-
ters (except the one(s) being tested) can be reasonably
left unchanged, since socioeconomic and ecological un-
certainties increase as we attempt to model farther into
the future.

Uncertainty testing consists of extreme tests and ex-
treme combination tests, which are employed to deter-
mine if the model becomes corrupted at some stages
or returns wholly unreasonable values, which may sig-
nify potential programming bugs or design flaws (Rykiel,
1996). The former refers to setting each major parameter
to minimum and maximum feasible values, conducting
thirty runs, and constructing envelopes at the 95 percent
confidence level over twenty years for the number of
households, population size, and habitat area. Extreme
combination tests combine sets of values of the four most
sensitive parameters (see Table 1, Note 1) and ob-
serving model behavior (see Table 4). For the sake of
simplicity, we only choose either the minimal or the
maximal values of each parameter in each combination.
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Model validation includes empirical validation, sen-
sitivity analysis, and experience/expert opinion valida-
tion (in relation to predicted spatial pattern, Table 1)
(Parker et al. 2003). To validate a model empirically, one
may employ either spatially independent data or tem-
porally independent data. Spatially independent data are
collected at the same time as those used to calibrate the
model, but from a separate region, and are not used to
calibrate the initial model. Temporally independent data
are collected in the same region as those used to cali-
brate the model, but at a different (usually later) time.
Our empirical validation includes demographic valida-
tion, which is concerned with comparing predicted
populations from 1997–2003 to observed data for that
time period, and with numbers of households over 1997–
2000. Our predetermined criterion is to pass the two-
sample (observed and predicted data) paired t-test at the
0.05 a level with a null hypothesis that the differences
between the model predictions and real observations are
zero. We also empirically validate the habitat model by
comparing predicted habitat change with results from
other researchers’ independent studies.

Experience/expert opinion validation is concerned
with the plausibility of the model output (Manson
2001), in particular with the spatial pattern of the
habitat model. We construct the probability for each cell
to be deforested and become nonhabitat, map the result,
and consider the map’s plausibility based on our field
observations and expert opinion of a few local re-
searchers. Sensitivity analysis considers the robustness of
model results to relatively small changes in input pa-
rameters. A highly sensitive model is undesirable, given
the uncertainty in model input. Sensitivity may be as-
sessed by perturbing each major parameter by a certain

magnitude (here, 50 percent), and calculating the sen-
sitivity index (J�rgensen 1986) as:

Sx ¼ ðdX=XÞ=ðdP=PÞ ð4Þ

where P is the value of the independent variable, dP is
the value for a small change of P, X is the value of the
dependent variable, and dX is the corresponding change
in X in response to the change in P.

Simulation Experiments

We employ two types of model experiments: scenario
analysis and complexity exploration. The objective of
scenario analysis is two-fold. On one hand, we use it as a
continuation of the model test process since unexpected
outcomes may signal potential errors or bugs in the
model; on the other hand, we want to provide policy
makers some insights into possible outcomes under
various practical conditions, as opposed to the extreme
conditions investigated during validation. Here we are
interested in discovering how population size, number of
households, and panda habitat respond to varying
conditions: (a) baseline scenario: employing status quo
conditions; (b) conservation scenario: setting the sensi-
tive factors and a few demographic factors to values that
would presumably benefit panda habitat conservation;
(c) development scenario: setting the factors to val-
ues that would presumably degrade panda habitat. We
change each parameter in such a magnitude that would
be (1) practical in the real world, e.g., fertility would be
more likely to reduce to 1.5 in the conservation scenario
than to 0; and (2) large enough to make a difference in
model output based on our sensitivity test or field ob-
servations. For details of these scenarios, see Table 5.

Table 1. Model Test Methods

Instrument Testing Stage Contents Criteria Data source

Verification Progressive building
& debugging

Beginning-completion

Uncertainty test Upon completion Extreme tests Theory, experience Simulation results
Extreme combination
tests(1)

Theory, experience Simulation results

Validation Empirical validation Upon completion Demographic
validation

t-test at 0.05 level Independent
government records

Habitat validation Change rate closeness Independent results by
other researchers

Sensitivity analysis Upon completion See Table 3 Experience Simulation results

Experience/expert
opinion

Upon completion Spatiotemporal
pattern

Theory, experience,
& expert opinion

Simulation results

Notes:

(1) The selection of the variables for the combination tests depends on the results of the sensitivity analysis: the most sensitive factor in each of the four

categories in Table 3 is selected.
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The use of these highly divergent scenarios may provide
some insights into the possible trajectories of panda
habitat change, and its consequent effect on the likeli-
hood of giant panda survival.

In complexity exploration, we are mainly interested in
using the model to find and test particular features of
complexity, including the impact of time lags, feedback
effects, and nonlinearity on key processes. We hypothesize
that: (1) most of the demographic factors have substantial
time-lag effects, and these effects escalate over time; (2)
most of the spatial variables have complex nonlinear be-
havior due to human feedback and behavior adjustment.
We illustrate (1) by focusing on the intention of young
people to leave their parents’ homesteads (a parameter
called ‘‘leave-home intention’’ in Tables 2 and 3). This
variable is important because it represents lifestyle
changes, which affect the efficiency of resource utilization
(Liu, Daily, et al. 2003). For (2), we use perceived
threshold distance and house buffer distance (for defini-
tions, see Table 2) to test how projected panda habitat
changes when these two variables take either the minimal
value, the value corresponding to the first quartile (14(max
� min)), the median value, the third quartile (34(max �
min)), or the maximum value. The perceived threshold
distance is an indicator of local households’ own percep-
tions of the ease of fuelwood collection. A fuelwood col-
lection site that is within this distance from a specific
household is considered to have a ‘‘short’’ proximity (see
the section ‘‘Fuelwood site selection’’). The larger the
value, the more likely a household views the current fu-
elwood collection distance as a ‘‘short distance.’’ This
variable may be affected by many other sociodemographic
or psychological factors. For example, an increase in a
specific household’s annual income may lead it to value
leisure time more highly, thereby decreasing the perceived
ease of fuelwood harvesting and reducing fuelwood de-
mand. The house buffer distance could be viewed as a
policy control: a zero distance represents enforcement of
no-cut regulations against fuelwood collection, while a
very long distance (e.g., 7,200 m in Table 2) represents no
or little restriction.

Results

We present the results in three sections. The first
section shows the outcomes of the model test efforts,
including both model verification and validation. The
second section reports on results of the three scenarios
described previously: the baseline scenario, the conser-
vation scenario, and the development scenario. The
third section illustrates the patterns of complexity de-
tected by the model simulations.

Model Test

We verify our model in two steps: (1) extreme value
tests and (2) extreme combination tests. The outcome of
these tests is reported in Table 2. The model behaves as
expected under the two extreme values of each variable.
For instance, when the parameter ‘‘leave-home inten-
tion’’ is set to be 0 (indicating that all young adults re-
main in their parents’ home after marriage), the final
model reports total habitat of 580.78 km2. When set to
1.0 (indicating that all young adults leave their parents’
home and establish their own households after mar-
riage), habitat area falls to 569.90 km2. This may
be caused by the great difference in the number of
households: approximately 1,600 as opposed to 860
(Figure 8(a)); the human population is identical under
both scenarios.

The 95 percent confidence envelopes become in-
creasingly wide for all three variables as the model pro-
jects into the future, indicating increasing uncertainty
in the prediction. For the number of households
(Figure 8(a)), the envelope for the value of 1.0 (leave-
home intention) is much higher than that for the
baseline, which, in turn is higher than that for the value
of 0.0. Because all the adults remain in their parental
homes and do not establish their own houses (leave-
home intention5 0.0), there is relatively little uncer-
tainty over time as the total number of households
slightly decreases. The population size dynamics do not
differ among the three situations (Figure 8(b)), with all
three envelopes nearly overlapping each other. This is
because the leave-home intention parameter only affects
the likelihood for young adults to establish their own
households, rather than population size. The area of
panda habitat (Figure 8(c)) decreases over time in all
scenarios, but the rate varies logically between the three
situations: results using a value of 1 show the most rapid
decrease, as far more households are established and
consume substantially more fuelwood.

Before reporting the results of the extreme combina-
tion tests, we report sensitivity test outcomes (listed as
part of model validation in Table 1) because we use them
to identify the most sensitive variables for the extreme
combination tests. Table 3 lists the sensitivity of model
parameters in four key groups. The most sensitive pa-
rameters are age at marriage in the family-planning cat-
egory (1.73 percent of sensitivity, see Table 3), leave-
home intention in the migration group (� 1.02 percent
over thirty years), price change in the electricity group
(� 3.27 percent), and house buffer distance in the spatial
group (2.36 percent). These variables are examined in
greater detail in subsequent extreme combination tests.
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The model runs through all the extreme combination
tests (i.e., a total of sixteen tests: two extreme values for
each of the four variables, Table 4) as well and gives
reasonable results. Model runs are reported for a string of
four letters, such as ‘‘bbss’’; s symbolizes a minimal value
(‘‘small’’), while ‘‘b’’ symbolizes a large (‘‘big’’) value;
‘‘bsss’’ means a combination that takes big, small, small,
and small values for the first to fourth variables in the

combination. The outcome habitat area ranges from
607.18 km2 in such combinations as ‘‘ssss’’ and ‘‘bsss’’ to
562.98 in km2 in a combination of ‘‘sbbb.’’ These com-
bination tests may also signify the relative importance or
contribution of each of the variables in affecting panda
habitat change. For instance, when the electricity price
change is ‘‘s’’ (–0.5 Yuan, or a 0.5 Yuan decrease), the
value of the house buffer distance (‘‘s’’ or ‘‘b’’) does

Table 2. Extreme Test Design and Results

Parameters Definition
Default
Value(1) Min, max

Habitatmin,
Habitatmax

(2)

Family-
planning

Max first kid interval Maximal time between marriage and birth of the 1st
child (years)

4 1, 576.33 (0.71)
20 578.40 (0.75)

Max birth interval Maximal time (years) between births of consecutive
children

6 1, 575.94 (0.95)
20 576.07 (0.86)

Upper birth age The upper age that a woman gives birth to child 50 30, 575.16 (0.84)
60 574.52 (0.89)

Marry age The age of first marriage 22 18, 575.55 (0.65)
40 581.52 (0.74)

Fertility # of children a woman may give birth to during her
lifetime.

2.0 0, 577.63 (1.05)
20 575.16 (0.81)

Migration College rate Ratio between the number of people who go to
college and the total number of people between
16–22 at a year.

1.92% 0.0% 575.81 (1.06)
100% 580.48 (0.99)

Leave-home intention Probability that a ‘‘parental-home dweller’’ (3) leaves
parental household and set up his/her own.

42% 0.0% 580.61 (0.96)
100% 569.85 (0.67)

Female marry-out rate Ratio of the females between 22–30 who moved out
of Wolong by marriage to all the females between 22–
30 at a year

0.28% 0.0% 574.90 (0.93)
100% 579.44 (0.70)

Male bring-female-in
rate

Ratio of the males between 22–30 who bring females
into Wolong by marriage to all the males between 22–
30 at a year

0.19% 0.0% 574.78 (0.89)
100% 571.02 (0.92)

Electricity Outage change Change of outage levels (0 for low, 1 for medium, 2
for high)

0 � 2, 582.42 (1.14)
2 570.11 (0.80)

Voltage change Change of voltage levels (0 for low, 1 for medium, 2
for high)

0 � 2, 565.96 (0.81)
2 574.65 (1.42)

Price change Price change (Yuan) 0 � 0.50 597.72 (0.42)
0.50 558.32 (1.24)

Spatial Perceived threshold
distance

Distance (m) within which the perceived fuelwood
collection distance is low

800 0 579.31 (0.83)
8,000 565.06 (1.15)

House buffer distance Maximum distance (m) within which households
collect fuelwood

3,600 0 603.68 (0.45)
7,200 584.50 (1.44)

Children-parent house
distance

Maximum distance (m) between households of
children & parents

800 0 580.87 (0.78)
7,200 567.52 (1.41)

Notes:
1The default values for the associated variables based on field observations. Habitat area (km2) under the default values at year 2016 is 575.49 (0.69). Minimal

and maximal values for the associated variables used to test the model.
2The habitat area (km2) under minimal and maximal values for the associated parameter. The numbers in the parentheses are standard errors.
3An adult child who remains in his/her parental home after marriage.
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not make much difference; when it is ‘‘b’’ (0.5 Yuan),
it makes a great difference, e.g., ‘‘bsbs’’ and ‘‘bsbb’’ give
607.18 and 574.78 km2, respectively. This implies that,

given an increase in the price of electricity, a hypothet-
ical policy on forbidding fuelwood collection (here we do
not consider its practicability because it is a model test)

Table 3. Sensitivity Tests for Model Input Parameters (Habitat Area Projected in 2016)

Parameters
Default
Value

150%(1)

Perturbation
Habitat

area (km2)(2)
Different

from baseline(3) Sensitivity

Family-plan Max first kid interval 4 6 575.55 (0.63) no N/A
Max birth interval 6 9 576.72 (1.35) no N/A
Upper birth age 50 60(4) 574.52 (0.63) no N/A
Age at marriage 22 33 580.48 (0.87) yes 1.73%
Fertility 2.0 3.0 575.16 (0.95) no N/A

Migration College rate 1.92% 2.88% 569.8 yes 0.06%
Leave-home intention (5) 42% 63% 565.29 yes � 1.02%
Female marry-out rate 0.28% 0.42% 569.43 yes 0.04%
Male bring-female-in rate 0.19% 0.29% 568.32 no N/A

Electricity Outage change 0 1 573.22 (0.88) no N/A
Voltage change 0 1 575.68 (0.68) no N/A
Price change 0 0.05 566.09 (0.88) yes � 3.27%

Spatial Fuelwood-change distance 800 1,200 574.65 (1.11) no N/A
House buffer distance (m) 3,600 5,400 582.29 (0.96) yes 2.36%
Kid-parent house distance (m) 800 1,200 574.52 (1.25) no N/A

Notes:
1The perturbation range of 50 percent is determined in consideration of: (1) it should be relatively small (otherwise we can use extreme tests as in Table 2); and

(2) the response magnitude of the habitat change should be large enough for our calculation. An alternative of –50 percent perturbation is not included simply

for space consideration.
2The standard error is in the parentheses following each average value.
3We use two-sample paired t-test at the 0.05 level to test whether the predicted habitat area is different from the baseline value at year 20.
4Here only 20 percent perturbation because an upper birth age of 75 years old (a 50 percent increase) does not make sense in the real world.
5All the 4 parameters under the category ‘‘Migration’’ have insignificant impact on panda habitat over 20 years. The numbers reported here are simulation results

over 30 years, and the sensitivity index is calculated using the amount of habitat over 30 years (568.20 km2).

Table 4. Extreme combination test design and results

Marry age
Leave-home

intention
Electricity
price (Yuan)

Buffer
Dist.(1) (m)

Average habitat area (km2)(2)

Year 5 Year 10 Year 15 Year 20

18(s) 0.0(s) � 0.5(s(3)) 0(s) 607.18(0.00) 607.18(0.00) 607.18(0.00) 607.18(0.00)
7,200(b) 607.18(0.00) 606.95(0.13) 606.92(0.21) 606.79(0.22)

0.5(b) 0(s) 607.18(0.05) 607.18(0.05) 607.18(0.05) 607.05(0.05)
7,200(b) 601.47(0.34) 588.64(0.96) 577.11(1.26) 571.54(1.21)

1.0(b) � 0.5(s) 0(s) 603.03(0.74) 601.34(1.05) 599.79(0.84) 598.23(0.89)
7,200(b) 601.99(0.67) 598.88(0.90) 595.25(0.90) 593.18(0.85)

0.5(b) 0(s) 603.42(0.67) 599.53(0.52) 597.84(0.85) 596.42(0.83)
7,200(b) 596.16(0.62) 582.29(0.57) 571.67(0.98) 562.98(1.07)

40(b) 0.0(s) � 0.5(s) 0(s) 607.18(0.00) 607.18(0.00) 607.18(0.00) 607.18(0.00)
7,200(b) 607.18(0.00) 607.05(0.08) 606.92(0.17) 606.53(0.18)

0.5(b) 0(s) 607.18(0.00) 607.18(0.00) 607.18(0.00) 607.18(0.00)
7,200(b) 601.86(0.32) 588.90(0.81) 579.06(1.11) 574.78(1.12)

1.0(b) � 0.5(s) 0(s) 606.66(0.40) 606.14(0.64) 605.62(0.66) 605.10(0.63)
7,200(b) 605.75(0.27) 604.45(0.42) 603.29(0.50) 600.83(0.93)

0.5(b) 0(s) 606.27(0.36) 606.14(0.41) 605.49(0.60) 602.12(0.59)
7,200(b) 601.47(0.51) 589.42(0.81) 579.44(1.01) 571.67(1.39)

Notes:

(1) House buffer distance (see Table 2 for its definition).

(2) The standard error is in the parentheses following each average value.

(3) The letters ‘‘s’’ and ‘‘b’’ stand for ‘‘small’’ and ‘‘big’’, respectively, corresponding to the minimal and maximal values of each parameter.
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will substantially reduce habitat loss compared to no or
little enforced collection restriction (house buffer dis-
tance5 7,200 m). This is intuitively correct and con-
sistent with our observations.

The model validation consists of three sections: em-
pirical validation, sensitivity testing, and validation via
expert opinion/corroboration. We reported the sensitiv-
ity test results earlier in this section. For empirical vali-
dation, we use two-sample paired t-tests to decide
whether the predictions are acceptable in relation to
field observations. The model passes such t-tests for both
demographic variables (number of households and pop-
ulation size), resulting in two p-values of 0.89 and 0.88
(Figures 7(a) and 7(b)). In addition, our predicted an-
nual population increase rate is 0.48 percent (a total of
9.50 percent over twenty years), while the same rate
from 1982 to 1996 is 1.05 percent (Liu, Ouyang, Tan, et
al. 1999). This decrease in the rate of population growth
could be due to the strict population control in the
1990s (Liu, Ouyang, Tan, et al. 1999). Our predicted
annual rate of increase for the number of households in
Wolong is 1.18 percent (a total of 23.63 percent over
twenty years, Table 3), which is greater than the increase
in population. This is consistent with the pattern from
1975 to 1999, for which the number of households in-
creased more rapidly than did the population size as
reported by Liu, Ouyang, Tan, et al. (1999).

To corroborate our work with that of other experts, we
compare our predictions about panda habitat dynamics
with results from other researchers. According to Laurie
and Pan (1991), the annual loss of forest area in Wolong
was 2.5 km2 prior to 1991. Because the ratio between the
total area of habitat (607 km2, see Figure 8(c)) and
the total area of forest (1,249 km2, calculated by adding
all the cells of forest classes defined in Linderman et al.
2004) in 1997 was 49 percent, this forest loss of 2.5 km2/
year is largely equivalent to a 1.23 km2/year loss of
habitat if the same ratio applies. Our model shows that
under the status quo, panda habitat will decline from
approximately 607 km2 to 576 km2 from 1996 to 2016
(Figure 8(c)), which translates into an annual habitat
loss of 1.55 km2. We explain our slightly higher habitat-
loss rate in this way: habitat is not evenly distributed in
all types of forests; instead, it is located in forest areas
within certain elevation and slope thresholds (see the
section ‘‘Habitat determination’’), to which people have
easy and frequent access. Cutting trees in these areas
would degrade the habitat more than for an average
forest plot that might be less accessible. Therefore, using
the ratio between the total area of habitat and the total
area of forest (49 percent) may lead to a lower value than
the true value.

Last, we report our model validation by the spatio-
temporal patterns. When time is controlled, the house-
holds occupy more land when leave-home intention is 1,
which is more obvious in year 20 (Figure 9(b), top) than
in year 10 (Figure 9(a), top). This is largely due to the
model assumption that all young adults establish their
own households and thus use more land. Consequent-
ly, habitat loss is more severe when leave-home inten-
tion is 1.0 than when it is 0.0, in particular for year 20
(Figures 9(b) and 9(d), bottom). From the spatial gra-
dients, the most likely pixels for future households are
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Figure 7. (a) Comparison between the observed and predicted
population size (t5 � 0.14, p5 0.89). (b) Comparison between the
observed and predicted number of households (t5 0.16, p5 0.88).
(c) Habitat under varying maximal fuelwood collection distance
(m). (d) Habitat under varying perceived distance for fuelwood
collection easiness.
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close to those existing households. These are surrounded
by more distant, less likely pixels, which are in turn
surrounded by the least likely pixels. Farthest away are
the totally unlikely ones. For habitat, we see a reversed
trend: the least likely habitat cells are closest to house-
holds, then the less likely ones, and the most likely ones
are the farthest. These phenomena are consistent with a
diffusion model characterizing household choice in
clearing land for construction and cutting fuelwood:
begin with the nearest suitable sites, and then move
outwards. Moreover, the model predicts the potential
habitat gains or losses when leave-home intention equals
1.0 or 0.0. In the first case, habitat loss is increasingly
large with respect to the baseline simulation as time

progresses in the model (Figures 10(a) and 10(b)). In
the second case, less habitat is lost relative to the
baseline simulation (Figures 10(c) and 10(d)). These
results agree with the experience of our own and local
researchers (Shiqiang Zhou, personal communications4).

Scenario Analysis

The conservation and development scenarios lead
to great differences in the three key variables. The
conservation scenario predicts approximately 600 km2 of
remaining panda habitat in 2016, the final model year.
The development scenario estimates just 554 km2 of
remaining panda habitat. The conservation scenario pre-
dicts approximately 873 households, with a total human
population of 2,611. The development scenario predicts
much larger numbers of households and people: 1,602
and 6,305, respectively (Table 5).

The spatial patterns corroborate the above numerical
changes in the number of households and population size.
Under the development scenario, the households expand
rapidly outward as time progresses, destroying some pre-
vious panda habitat. Under the conservation scenario, the
land occupied by local households remains nearly un-
changed, resulting in little habitat loss. Figure 11 gives a
snapshot of panda dynamics under the conservation and
development scenarios, which shows that the develop-
ment scenario exerts much more severe impacts on panda
habitat in parallel with a big cluster of households.

Complexity Exploration

As shown in Figure 8(a), the numbers of households
differ from each other increasingly over time when the
leave-home intention takes 0, 0.42, and 1.0; the same is
true for panda habitat (Figure 8(c)). The differences in
panda habitat among these three scenarios become more
significant over time: approximately from year 15, the
lower bound of the 0.0 intention envelope is substan-
tially higher than the upper bound of the baseline en-
velope; from year 11, the lower bound of the baseline
envelope is substantially higher than the upper bound of
the 1.0 intention envelope. This supports our first hy-
pothesis that differences in initial demographic factors
have large and escalating effects on model outcome.

The second hypothesis concerns nonlinearity in ob-
served spatial patterns of household processes. Here we
consider the impact of house buffer distance, which is a
parameter representing a possible habitat protection pol-
icy to control how far people are allowed to search for
fuelwood from their homes. As the house buffer distance
rises, consequent total panda habitat area falls to a certain
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Figure 8. (a) The average numbers of households, (b) population
size, and (c) predicted panda habitat and associated upper and
lower 95 percent confidence envelopes for 1) the baseline simula-
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point (approximately 573 km2), and then rises slowly
(Figure 7(c)). We then consider a different, yet related,
variable: perceived fuelwood distance. As the threshold

for the perceived fuelwood collection distance rises, a
similar pattern occurs, except that the changing point is
much larger (approximately 6,000 m; Figure 7(d)).

Figure 9. The gradients for household locations (top) and panda habitats (bottom) for model predictions employing (a) leave-home inten-
tion5 1.0 and time5 10; (b) leave-home intention5 1.0 and time5 20; (c) leave-home intention5 0.0 and time5 10; (d) leave-home
intention5 0.0 and time5 20. For the household location gradients, the white, light blue, blue, and dark blue colors represent probabilities of
o25%, 25%–50%, 50%–75%, and475% for the occurrence of households. For the habitat gradients, the green, light green, yellow, and white
colors represent probabilities of o25%, 25%–50%, 50%–75%, and 475% for the occurrence of habitat.

Figure 10. The habitat change gradients compared to the baseline simulations for various alternative scenarios: (a) leave-home inten-
tion5 1.0 and time5 10; (b) (b) leave-home intention5 1.0 and time5 20; (b) leave-home intention5 1.0 and time5 20; (c) leave-home
intention5 0.0 and time5 10; (d) leave-home intention5 0.0 and time5 20. Shades of blue represent habitat gain with respect to the
baseline, while red shades indicate habitat loss. The three levels of light yellow, pink, and red in (a) and (b) represent the probabilities of
o25%, 25%–50%, 450% for habitat loss relative to the baseline, while the three levels of blue in (c) and (d) represent the probabilities of
o25%, 25%–50%, 450% for habitat gain relative to the baseline.
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Discussion

Though the agent-based model presented here shows
great potential for addressing practical issues about
panda protection, it has been developed to address more
general, theoretically important issues such as integrat-

ing socioeconomics, ecology, and demography, under-
standing complexities in some coupled society–environ-
ment systems, and linking ABM and GIS to study
spatiotemporal dynamics of land-use and land-cover
changes. The following subsections discuss several of
these issues.

Table 5. Definition and results of conservation and development scenarios and simulation results over 20 years(1)

Category Variable Conservation scenario Development Scenario

Electricity Price 0.05 Yuan decline 0.05 Yuan rise
Outage levels One level decrease One level rise
Voltage levels One level increase One level decline

Migration Leaving parental home intention 0.42 ! 0.21 0.42 ! 0.95
College rate 1.92% ! 30% (16–20 youth) 1.92% ! 0.0%
Female marry-out rate 0.28% ! 20% 0.28% ! 0.0%

Family planning Fertility 2.0 ! 1.5 2.0 ! 5.0
Birth interval 3.5 ! 5.5 3.5 ! 1.5
Marriage age 22 ! 28 22

Fuelwood Distance for demand change (m) 800 ! 0 800 ! 8000

Results # of households 873.00 (7.48) 1,602.00 (12.12)
Population size 2,611 (27.51) 6,305 (76.92)
Habitat (km2) 599.92 (0.54) 553.52 (1.13)

Notes:

(1) The first numbers in the spaces are the default values in the model, and the second values are those used in the associated scenarios.

Figure 11. A snap-
shot of panda habitat
fragmentation and
household distribution
in 1996 (a), 2006 (b1
for development and
c1 for conservation),
and 2016 (b2 for
development and
c2 for conservation).
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Model Results and Policy Implications

Model verification and validation turn out to be a
theoretical and practical challenge in modeling complex
systems (e.g., Manson 2001; Parker et al. 2003), and we
address this challenge by designing a systematic strategy
(see section ‘‘Model Test’’; Table 1) and subjecting our
model to this strategy. Though our model passes all the
tests, it would be preferable to collect more detailed
spatial data for forest volume and panda habitat in order
to further validate the model. Greater detail would also
facilitate the application of the model in balancing the
needs for panda conservation and those for human well-
being within the reserve.

This study used total area of potential panda habitat
as a primary model output to assess the impact of dif-
ferent scenarios on the panda. Though a decrease of 5.27
percent (about 32 km2) under the baseline situation (the
status quo scenario) over twenty years may seem mod-
erate, the spatial distribution and fragmentation of
panda habitat should be of concern. Pandas appear to
prefer areas that humans also tend to visit for fuelwood
collection (Schaller et al. 1985; Liu, Ouyang, Taylor,
et al. 1999). Therefore, the predicted decrease in po-
tential habitat may occur in the panda’s preferred hab-
itat. Furthermore, employing total area alone does not
address the problem of habitat fragmentation, which
may render potential habitat pixels unusable for pandas.
According to Schaller et al. (1985), a giant panda usually
occupies a home range with an area of about 2 km2. In
our model, all pixels meeting the simple spatial criteria,
including fragmented areas smaller than 2 km2, are
counted as panda habitats; therefore, it is likely that our
model overestimates actual viable panda habitat. How-
ever, this approximation could be viewed from another
perspective: within all the potential panda habitats
(green blocks in Figure 11), there might be pandas;
within all the areas that are counted as nonhabitats,
there should be no pandas. A final spatial concern for
the results is that stochastic environmental shocks, such
as forest fires, could lead to a substantial sudden loss of
panda habitat. This model does not account for such
factors.

Model results under conservation and development
scenarios indicate that human socioeconomic and de-
mographic factors substantially affect panda habitat, but
the impact of these factors takes time to manifest itself
on the environment. Implementing policies that en-
courage family planning, human out-migration from the
reserve, lifestyle change, or the increased use of elec-
tricity could result in subsequent preservation of panda
habitat to varying degrees. For instance, the model

predicts that an electricity subsidy of 0.05 Yuan could
reduce total habitat loss by the year 2016 from around 32
km2 to 18 km2. If combined with other conservation
activities, even more habitat could be spared. However,
our results indicate that the environmental benefits of
such policies—or the penalties should they not be im-
plemented—are not immediately obvious.

The nonlinear and counterintuitive relationship be-
tween the amount of panda habitat and the house buffer
distances as shown in Figure 7(c) may be caused by the
following relationships: when this buffer distance is very
small (even zero), people are allowed to harvest little or
no fuelwood, and thus panda habitat is better preserved;
when this buffer distance is very large, local households’
fuelwood collection is scattered throughout a large buffer
region, and some areas in this region may have a sub-
stantial forest volume or a rapid regeneration rate
(capturing this type of uncertainty in the section ‘‘Spatial
environmental data’’ is one strength of this agent-based
model), so cutting wood may not cause severe habitat
loss. If, however, this buffer distance is somewhere in
between (around 1,800 m), local households’ unre-
stricted fuelwood demand is satisfied through cutting all
available wood in this small region (very likely going
beyond its carrying capacity) and causing more habitat
loss. As time goes on, the local households are likely to
move outwards, as the pattern in Figures 10(a) and
10(b) shows.

Similarly, the parameter perceived threshold dis-
tance also leads to nonlinear changes in panda habitat
(Figure 7(d)). This variable could be explained as the
ease of adjusting household fuelwood demand based on
the existing fuelwood collection distance: the longer the
distance, the harder to reduce their fuelwood demand,
thus more habitat loss caused by satisfying this de-
mand. However, after a threshold (6,000 m), this ef-
fect diminishes and yields to other complexities (such
as the above-mentioned habitat vs. buffer distance
relationships).

Methodology: Integration, Complexity, and

Coupling of ABM and GIS

The IMSHED developed for this research has utilized
data and models across scales, disciplines, and time pe-
riods. Data integration included working with data at
different scales (e.g., individual-level data such as age vs.
population data such as mortality rate), from different
disciplines (e.g., ecological data such as forest regener-
ation vs. sociological data such as leave-home inten-
tion), and with varying degrees of uncertainty (e.g.,
accurate human individual demographic data vs. forest
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volume data with a wider range of uncertainty). Far
more so than data, however, the combination of methods
and models from different disciplines reflects the breadth
of the human–environment modeling challenges. For
instance, IMSHED employs a fuelwood demand model
(An et al. 2001) and an econometric model for elec-
tricity demand (An et al. 2002) to compute fuelwood
demand on a household basis (see the section ‘‘Demo-
graphic Submodel’’). By integrating methods and em-
pirical results concerning young adults’ propensity to
leave their parental homes and form their own house-
holds, IMSHED is able to project household dynamics
and link them to panda habitat loss. In addition, eco-
logical uncertainties or variability (e.g., variations in
forest volume and regrowth rates) are taken into con-
sideration through assigning varying values to the at-
tributes of the forest pixel objects, which demonstrate
the utility of object-oriented programming (OOP) for
capturing environmental variability.

From the above analyses, we are confident that our
modeling framework effectively integrates individual-
level data and transdisciplinary models for projecting
spatiotemporal changes of some key response variables.
This challenge has been viewed as very significant for
studying environmental sustainability (Clark 2002). This
bottom-up approach ‘‘starts from the ‘parts’ (i.e., indi-
viduals) of a system and then tries to understand how
the system’s properties emerge from the interactions
among these parts’’ (Grimm 1999). Consequently, this
framework can efficiently deal with many research needs
that traditional approaches may find difficult or impos-
sible to deal with, and may provide more accurate pre-
dictions. However, this increased accuracy can only be
found in the aggregated results, such as human popula-
tion size or number of households. Some stochastic
processes are simulated at the agent level (e.g., an in-
dividual person’s leaving parental home decisions), and
individual simulation runs are essentially single realiza-
tions of the process. These simulation runs are useful in
predicting the overall number of households and the
resultant spatial pattern, but whether a particular house-
hold will be established at a specific location is not a
question that our model resolves to answer.

Developing and using ABM do not discredit the tra-
ditional state variable, statistic, or analytic approaches.
On the contrary, in many situations, our framework uses
these approaches because it is unnecessary or sometimes
impossible to account for every detail of the agents under
consideration. For instance, when computing the prob-
ability to switch from fuelwood to electricity, we use a
logistic regression (see the section ‘‘Socioeconomic
Submodel’’), and obviously this regression model is an

average trend derived from a number of households. It is
important to balance between using outcomes based on
individual agent actions and averaged trend data to find
an appropriate level of resolution and aggregation in
predictions. The choice depends on research needs, the
applicability of individual data, and available resources
(time, budget, and other conditions like computational
power).

The complexities in many coupled society–environ-
ment open systems have been barriers for effectively
studying and understanding such systems. By decom-
posing the population-level dynamics into life histories of
all the individuals and characterizing the dynamics of all
households in the landscape, it becomes easier to cap-
ture any time-lag effects of demographic factors. For
instance, an increase of 0.5 in fertility may be ‘‘con-
sidered’’ by many couples planning to have children at
an appropriate time (the model ‘‘knows’’ the time), and
this consideration may lead to an increase in population
size and number of households with a cumulative effect.
This effect may not cause observable habitat degradation
in ten years, but may do so in thirty years. In addition,
with feedback (households decrease their fuelwood de-
mand as collection distances rise) built into our model,
the environment is not simply a passive cache of re-
sources waiting to be developed; instead, its geography
imposes opportunities and limitations on the human
inhabitants. This leads to a more dynamic portrayal of
the human–environment system and, we believe, more
representative model results.

Finally, the integration of ABM and GIS in this study
has allowed for further insights into the spatial trajec-
tories of some key ecological or socioeconomic processes,
such as the gradients for household locations and panda
habitats in Figure 9. These insights are not only im-
portant in validating the model (abnormal spatial
trajectories may signify potential bugs; see Parker et al.
2003), but also may be significant for panda conservation
efforts because the trajectories provide policy makers
information about where, when, and under what con-
ditions panda habitat would be lost or conserved.
However, this integration is still in its fledgling stage.
Much readily usable functionality in GIS (such as finding
the cost distance) has to be coded in Java Swarm by the
authors, which sometimes becomes a heavy burden. As
an alternative, some model outcomes have to be ex-
ported to ArcGIS for further spatial analysis (e.g., the
gradient of households locations in Figure 9). Coupling
environmental models and GIS has long been recognized
as a key challenge (Goodchild, Parks, and Steyaert 1993;
Wesseling et al. 1996), and our experience reflects this.
A more specific issue for coupling ABM and GIS is the
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development of rule sets based on empirical metrics.
Current metrics may not adequately reflect key aspects
of the environment, and new landscape and/or spatial
metrics (e.g., Herold, Goldstein, and Clarke 2003) may
need to be developed to capture different spatial and
temporal dynamics of landscape/habitat change.

In this study, we develop a framework to integrate
geographical, ecological, socioeconomic, and demograph-
ic data into different levels or types of agents or objects
(persons, households, pixels), incorporate some complex
mechanisms (e.g., time lag, feedback), and project the
spatial patterns of panda habitat extent over time. This
framework enables us to study how changes in socio-
economic and demographic factors work in both
straightforward and complex ways to affect panda habi-
tat. This impact is characterized over time in a spatially
explicit manner. Using this combined model has enabled
us to develop a better understanding of the relationships
between people and panda habitat in Wolong, which
may, in turn, help to develop environmentally sound
policies in the reserve. More broadly, we have provided a
working example of a framework (including the tool) to
explain or predict overall landscape patterns as a result
of the actions of many agents. This framework is a
powerful means for integrating data and models across
varying scales and disciplines and shows promise for
many human-environment studies.
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Notes

1. For link to these tools, go to http://wiki.swarm.org/wiki/
Main_Page (last accessed on 17 June 2004).

2. Electricity is the readily available substitute for fuelwood in
the Reserve, subject to government price control and some
quality problems (An et al. 2002). Other energy sources such

as coal, charcoal, biogas, and sun/wind power are not used
and no market exists for them.

3. Though we observed some people who took temporary jobs
in outside areas (primarily big cities), they still had their
residence registration (known as Hukou) license in Wolong.
More importantly, they often come back to Wolong during
busy agricultural seasons and Chinese spring festivals and
conduct resource-related activities such as fuelwood collec-
tion. Thus, they are not treated as out-migrants.

4. Shiqiang Zhou from the Wolong Nature Reserve is an
experienced researcher with extensive knowledge in local
biology, ecology, and socioeconomic and demographic situa-
tions. The authors have closely worked with him to collect
the data, build the models (including earlier models as
published by An et al. 2001, 2002, 2003), and discuss the
model outcomes during 1998–2004.
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